D-type cyclins and cyclin-dependent kinase (cdk-4) are likely involved in regulating passage of cells through the G1 phase of the cell cycle. A decrease in the proportion of cells in G1, a relatively radiation-sensitive phase of the cell cycle, should result in increased resistance to ionizing radiation; however, the effect of such overexpression on X-ray-induced G1-phase arrest is not known. Radiation survival curves were obtained at a dose rate of either 8 cGy/min or 1 Gy/min for subclones of the IL-3-dependent hematopoietic progenitor cell line 32D cl 3 expressing transgenes for either cyclin-D1, D2 or D3 or cdk-4. We compared the results to those with overexpression of the transgene for Bcl-2, whose expression enhances radiation survival and delays apoptosis. Cells overexpressing transgenes for each D-type cyclin or Bcl-2 had an increased number of cells in S phase compared to parent line 32D cl 3; however, overexpression of cdk-4 had no effect on cell cycle distribution. Cell death resulting from withdrawal of IL-3 was not affected by overexpression of cyclins D1 and D3 but was delayed by overexpression of D2, cdk-4 or Bcl-2. Flow cytometry 24 h after 5 Gy irradiation demonstrated that overexpression of each G1-phase regulatory transgene decreased the proportion of cells at the G1/ S-phase border. Western analysis revealed induction of cyclin-D protein levels by irradiation, but no change in the levels of cdk-4, p53 or p21. There was no significant change in the D0, but a significant increase in the n̄ for cyclin-D or cdk-4 transgene-overexpressing clones at 1 Gy/min (P < 0.017). At a lower dose rate of 8 cGy/min, the n̄ for cyclin or cdk-4-overexpressing clones was also increased (P < 0.07). Thus overexpression of cyclin-D or cdk-4 in hematopoietic cells induces detectable effects on hematopoietic cell radiation biology including a broadening of the shoulder on the radiation survival curve and a decrease in radiation-induced G1/ S-phase arrest.
Skip Nav Destination
Close
Article navigation
September 1995
Research Article|
September 01 1995
Inhibition of G1-Phase Arrest Induced by Ionizing Radiation in Hematopoietic Cells by Overexpression of Genes Involved in the G1S-Phase Transition
Radiat Res (1995) 143 (3): 245–254.
Citation
Michael Epperly, LuAnn Berry, Ann Halloran, Joel S. Greenberger; Inhibition of G1-Phase Arrest Induced by Ionizing Radiation in Hematopoietic Cells by Overexpression of Genes Involved in the G1S-Phase Transition. Radiat Res 1 September 1995; 143 (3): 245–254. doi: https://doi.org/10.2307/3579210
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner