An analytical model is presented that describes radiation-induced cellular inactivation in the presence of sublethal damage repair, cellular repopulation and redistribution in the mitotic cycle (the 3 Rs). The parameters of the model are measurable experimentally. Also taken into account are the initial age distribution of the cell population, the fact that subgroups of cells progress through the cycle at different speeds, the effects of a dose of radiation on the duration of the four phases of the cycle ( G1, S, G2, M), the possibility that a certain fraction of the cells are quiescent, and cell loss and/or cell removal from the proliferating population. Survival probabilities are expressed as linear-quadratic functions of dose where the coefficients α and β as well as the recovery constant (t0) are taken to depend on the position of the cell in the mitotic cycle. Explicit analytical expressions for inactivation probability are given for clonogenic cells exposed to continuous or fractionated radiation. Two model calculations are used to illustrate the formalism: in one, the redistribution of cells during fractionated therapy is examined. In the other calculation, it is shown that it is sufficient to take into account differences in proliferation rates and the change in the ratio α/β within the generation cycle for cells that may have otherwise equal response to acute exposures to explain that in a fractionated treatment protocol late-responding cells are more sensitive to the dose per fraction than early-responding cells. It is not necessary to invoke differences in radiosensitivity between these two classes of cells.
Skip Nav Destination
Close
Article navigation
April 1996
Research Article|
April 01 1996
The Combined Effects of Sublethal Damage Repair, Cellular Repopulation and Redistribution in the Mitotic Cycle. I. Survival Probabilities after Exposure to Radiation
Radiat Res (1996) 145 (4): 457–466.
Citation
M. Zaider, C. S. Wuu, G. N. Minerbo; The Combined Effects of Sublethal Damage Repair, Cellular Repopulation and Redistribution in the Mitotic Cycle. I. Survival Probabilities after Exposure to Radiation. Radiat Res 1 April 1996; 145 (4): 457–466. doi: https://doi.org/10.2307/3579067
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner