Variations in sensitivity to radiation-induced mammary cancer among different strains of mice are well known. However, the reasons for these variations have not been determined. In the present study, the cell dissociation assay was used to determine the radiation-induced transformation frequencies in sensitive BALB/c mice and resistant C57BL mice as well as the resistant hybrid <tex-math>${\rm B}6{\rm CF}_{1}$</tex-math> independent of host environment. The influence of host environment on the progression of transformed cells to the neoplastic phenotype was also examined. Results demonstrated that the variations in sensitivity among these sensitive and resistant mice are a result of inherent differences in the sensitivity of the mammary epithelial cells to radiation-induced transformation. Under the conditions used, host environment played no role in the initiation of transformed cells by radiation or in the progression of these cells to the neoplastic phenotype.
Skip Nav Destination
Close
Article navigation
September 1996
Research Article|
September 01 1996
Strain-Dependent Susceptibility to Radiation-Induced Mammary Cancer Is a Result of Differences in Epithelial Cell Sensitivity to Transformation
Radiat Res (1996) 146 (3): 353–355.
Citation
R. L. Ullrich, N. D. Bowles, L. C. Satterfield, C. M. Davis; Strain-Dependent Susceptibility to Radiation-Induced Mammary Cancer Is a Result of Differences in Epithelial Cell Sensitivity to Transformation. Radiat Res 1 September 1996; 146 (3): 353–355. doi: https://doi.org/10.2307/3579468
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner
Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group
Hualin Zhang, Xiaodong Wu, Xin Zhang, Sha X. Chang, Ali Megooni, Eric D. Donnelly, Mansoor M. Ahmed, Robert J. Griffin, James S. Welsh, Charles B. Simone, II, Nina A. Mayr