It is well known that cells of human tumor cell lines display a wide range of sensitivity to radiation, at least a part of which can be attributed to different capacities to process and repair radiation damage correctly. We have examined the response to very low-dose radiation of cells of five human tumor cell lines that display varying sensitivity to radiation, using an improved assay for measurement of radiation survival. This assay improves on the precision of conventional techniques by accurately determining the numbers of cells at risk, and has allowed us to measure radiation survival to doses as low as 0.05 Gy. Because of the statistical limitations in measuring radiation survival at very low doses, extensive averaging of data was used to determine the survival response accurately. Our results show that the four most resistant cell lines exhibit a region of initial low-dose hypersensitivity. This hypersensitivity is followed by an increase in radioresistance over the dose range 0.3 to 0.7 Gy, beyond which the response is typical of that seen in most survival curves. Mathematical modeling of the responses suggests that this phenomenon is not due to a small subpopulation of sensitive cells (e.g. mitotic), but rather is a reflection of the induction of resistance in the whole cell population, or at least a significant proportion of the whole cell population. These results suggest that a dose-dependent alteration in the processing of DNA damage over the initial low-dose region of cell survival may contribute to radioresistance in some cell lines.
Skip Nav Destination
Close
Article navigation
October 1996
Research Article|
October 01 1996
Low-Dose Hypersensitivity and Increased Radioresistance in a Panel of Human Tumor Cell Lines with Different Radiosensitivity
Radiat Res (1996) 146 (4): 399–413.
Citation
Bradly G. Wouters, Arturo M. Sy, Lloyd D. Skarsgard; Low-Dose Hypersensitivity and Increased Radioresistance in a Panel of Human Tumor Cell Lines with Different Radiosensitivity. Radiat Res 1 October 1996; 146 (4): 399–413. doi: https://doi.org/10.2307/3579302
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner
Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group
Hualin Zhang, Xiaodong Wu, Xin Zhang, Sha X. Chang, Ali Megooni, Eric D. Donnelly, Mansoor M. Ahmed, Robert J. Griffin, James S. Welsh, Charles B. Simone, II, Nina A. Mayr