Single crystals of the complex 1-methylthymine·9-methyladenine were X-irradiated at 10 and at 65 K and studied in the temperature range 10 to 290 K using K-band EPR, ENDOR and field-swept ENDOR (FSE) techniques. The EPR and ENDOR spectra are dominated by two major and four minor resonances. The two major resonances are: MTMA1, the well-known radical formed by net hydrogen abstraction from the C5 methyl group of the thymine moiety, and MTMA2, the radical formed by net hydrogen abstraction from the N1 methyl group of the thymine moiety. The latter product has not been observed previously in any 1-methylthymine derivative. The four minor resonances are: MTMA3, the anion of 1-methylthymine, possibly protonated at the O4 position; MTMA4, the well-known species formed by net hydrogen addition to C6 of the thymine moiety; MTMA5, the species formed by net hydrogen addition to C2 of the adenine moiety; and MTMA6, the species formed by net hydrogen addition to C8 of the adenine moiety. Radical MTMA3, the O4-protonated thymine anion, was clearly detected at 10 K, but upon thermal annealing at 40 K the lines began to disappear. In crystals irradiated at 65 K MTMA3 was only weakly present. Radical MTMA2 decayed at about 250 K with no detectable successor, and radical MTMA5 disappeared at about 180 K. It was not possible to learn from the data if MTMA5 transformed into MTMA6. The radical distribution in the 1-methylthymine·9-methyladenine crystal system is different from that in crystals of the individual components. Reasons for this behavior are discussed in light of the hydrogen bonding schemes and molecular stacking interactions in each of the crystals. An important feature is the concept of excited-state transfer from the adenine to the thymine moiety, followed by dehydrogenation at the thymine N1-methyl group, the mechanism resulting in radical MTMA2.
Skip Nav Destination
Close
Article navigation
October 1996
Research Article|
October 01 1996
Radiation Damage to DNA Base Pairs. I. Electron Paramagnetic Resonance and Electron Nuclear Double Resonance Study of Single Crystals of the Complex 1-Methylthymine·9-Methyladenine X-Irradiated at 10 K
Radiat Res (1996) 146 (4): 425–435.
Citation
Einar Sagstuen, Eli Olaug Hole, William H. Nelson, David M. Close; Radiation Damage to DNA Base Pairs. I. Electron Paramagnetic Resonance and Electron Nuclear Double Resonance Study of Single Crystals of the Complex 1-Methylthymine·9-Methyladenine X-Irradiated at 10 K. Radiat Res 1 October 1996; 146 (4): 425–435. doi: https://doi.org/10.2307/3579304
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner