Whether radiofrequency (RF) fields are carcinogenic is controversial; epidemiological data have been inconclusive and animal tests limited. The aim of the present study was to determine whether long-term exposure to pulse-modulated RF fields similar to those used in digital mobile telecommunications would increase the incidence of lymphoma in Eμ-Pim1 transgenic mice, which are moderately predisposed to develop lymphoma spontaneously. One hundred female Eμ-Pim1 mice were sham-exposed and 101 were exposed for two 30-min periods per day for up to 18 months to plane-wave fields of 900 MHz with a pulse repetition frequency of 217 Hz and a pulse width of 0.6 ms. Incident power densities were <tex-math>$2.6-13\ {\rm W}/{\rm m}^{2}$</tex-math> and specific absorption rates were 0.008-4.2 W/kg, averaging 0.13-1.4 W/kg. Lymphoma risk was found to be significantly higher in the exposed mice than in the controls (OR = 2.4, P = 0.006, 95% CI = 1.3-4.5). Follicular lymphomas were the major contributor to the increased tumor incidence. Thus long-term intermittent exposure to RF fields can enhance the probability that mice carrying a lymphomagenic oncogene will develop lymphomas. We suggest that such genetically cancer-prone mice provide an experimental system for more detailed assessment of dose-response relationships for risk of cancer after RF-field exposure.

This content is only available as a PDF.
You do not currently have access to this content.