The British Nuclear Fuels plc facility at Sellafield performs a range of nuclear-related activities. The site has been in operation since 1950 and has, in general, employed a stable work force, many of whom have accumulated relatively high occupational exposures to ionizing radiation. This paper compares the physical dosimetry with two biological end points for evaluating radiation exposure: fluorescence in situ hybridization with whole-chromosome painting probes to quantify stable chromosome aberrations (translocations and insertions), and glycophorin A (GPA) analysis of variant erythrocytes. For the cytogenetic analyses, 81 workers were evaluated in five dose categories, including 23 with minimal radiation exposure (≤50 mSv) and 58 with exposures ranging from 173 to 1108 mSv, all but 3 being >500 mSv. In a univariate analysis, the mean stable chromosome aberration frequencies showed a significant increase with dose category (P = 0.032), and with cumulative dose when dose is treated as a continuous variable (P = 0.015). The slope of the dose response for stable aberrations is 0.79 ± 0.22 aberrations per 100 cells per sievert (adjusted for smoking status), which is less than that observed among atomic bomb survivors, and suggests a dose and dose-rate effectiveness factor for chronic exposure of about 6. Analyses of the data for GPA N/Ø and N/N variants from 36 workers revealed no correlation with dose. Neither was there a correlation between the frequencies of N/Ø GPA variants and stable aberrations, although a weak negative association was observed between N/N variant frequency and stable aberrations (r = -0.38, P = 0.05). These results provide clear evidence for the accumulation of stable aberrations under conditions of chronic occupational exposure to ionizing radiation and show that stable chromosome aberrations are a more sensitive indicator for chronic radiation exposure than GPA variants. In comparison with human studies of brief exposure, chronic low-dose exposures appear substantially less effective for producing somatic effects as reflected by stable chromosome aberrations.
Skip Nav Destination
Article navigation
September 1997
Research Article|
September 01 1997
Biological Dosimetry of Radiation Workers at the Sellafield Nuclear Facility
Radiat Res (1997) 148 (3): 216–226.
Citation
James D. Tucker, E. Janet Tawn, Duncan Holdsworth, Stephen Morris, Richard Langlois, Marilyn J. Ramsey, Paula Kato, John D. Boice,, Robert E. Tarone, Ronald H. Jensen; Biological Dosimetry of Radiation Workers at the Sellafield Nuclear Facility. Radiat Res 1 September 1997; 148 (3): 216–226. doi: https://doi.org/10.2307/3579605
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Radiofrequency Fields and Calcium Movements Into and Out of Cells
Andrew Wood, Ken Karipidis
Studies of the Mortality of Atomic Bomb Survivors, Report 14, 1950–2003: An Overview of Cancer and Noncancer Diseases
Kotaro Ozasa, Yukiko Shimizu, Akihiko Suyama, Fumiyoshi Kasagi, Midori Soda, Eric J. Grant, Ritsu Sakata, Hiromi Sugiyama, Kazunori Kodama
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner
Hypoxanthine Reduces Radiation Damage in Vascular Endothelial Cells and Mouse Skin by Enhancing ATP Production via the Salvage Pathway
Megumi Fujiwara, Nana Sato, Ken Okamoto