Radiation-induced gastrointestinal toxicity is due in part to the killing of the clonogenic crypt cells and eventual depopulation of the villi. Keratinocyte growth factor (KGF), a member of the fibroblast growth factor family (FGF-7), has been shown to stimulate proliferation of cells along the murine digestive tract from the foregut to the colon. Using an in vivo microcolony assay, we found that 1.0 mg/kg KGF administered intravenously (i.v.) for 3 consecutive days (2 days before, 1 day before and 2 h after irradiation) increased the number of surviving crypts by a factor of 2.6, 2.7 and 2.4 in the duodenum, jejunum and ileum, respectively, after a single-dose whole-body irradiation (10-16 Gy) (P < 0.001). Treatment of mice with KGF i.v. significantly increased the D0 of the radiation survival curves by 0.37, 0.22 and 0.36 Gy, leading to dose modification factors of 1.28, 1.16 and 1.24 for duodenal, jejunal and ileal crypt cells, respectively. Similar results were obtained with KGF administered subcutaneously. Treatment with both KGF and stem cell factor (previously shown to enhance intestinal crypt survival after total-body irradiation) increased the number of surviving crypt cells after irradiation to levels similar to that in animals treated with KGF alone. Administration of KGF for 7 consecutive days (beginning 2 days prior to irradiation) increased the <tex-math>${\rm LD}_{50/10}$</tex-math> from 5.50 Gy/day to 5.90 Gy/day (P = 0.05) for animals irradiated with five daily fractions to a local abdominal field. These results suggest that KGF may be of clinical value in reducing radiation toxicity to the intestine.
Skip Nav Destination
Article navigation
September 1997
Research Article|
September 01 1997
Enhancement of Murine Intestinal Stem Cell Survival after Irradiation by Keratinocyte Growth Factor
Radiat Res (1997) 148 (3): 248–253.
Citation
Waqqar B. Khan, Chaoxiang Shui, Shoucheng Ning, Susan J. Knox; Enhancement of Murine Intestinal Stem Cell Survival after Irradiation by Keratinocyte Growth Factor. Radiat Res 1 September 1997; 148 (3): 248–253. doi: https://doi.org/10.2307/3579609
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Radiofrequency Fields and Calcium Movements Into and Out of Cells
Andrew Wood, Ken Karipidis
Studies of the Mortality of Atomic Bomb Survivors, Report 14, 1950–2003: An Overview of Cancer and Noncancer Diseases
Kotaro Ozasa, Yukiko Shimizu, Akihiko Suyama, Fumiyoshi Kasagi, Midori Soda, Eric J. Grant, Ritsu Sakata, Hiromi Sugiyama, Kazunori Kodama
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner
Predictive Radiation Oncology – A New NCI–DOE Scientific Space and Community
Jeffrey C. Buchsbaum, David A. Jaffray, Demba Ba, Lynn L. Borkon, Christine Chalk, Caroline Chung, Matthew A. Coleman, C. Norman Coleman, Maximilian Diehn, Kelvin K. Droegemeier, Heiko Enderling, Michael G. Espey, Emily J. Greenspan, Christopher M. Hartshorn, Thuc Hoang, H. Timothy Hsiao, Cynthia Keppel, Nathan W. Moore, Fred Prior, Eric A. Stahlberg, Georgia Tourassi, Karen E. Willcox