We investigated the time-dependent effects of 8 Gy of γ radiation on the activities of cyclin-dependent kinases (Cdk's) and the incorporation of the thymidine analog bromodeoxyuridine (BrdU) throughout the S phase in Chinese hamster ovary (CHO) cells. The in vitro Cdk activities of immunoprecipitated cyclin E, cyclin A and Cdk2 were reduced about 30% per cell within 0.5-1 h after irradiation, but they recovered at different rates. The kinase activity of the cyclin E-Cdk2 complex recovered first and exceeded the control values by 1.5-2 h after irradiation. Cyclin A-Cdk activities began to recover at 3-4 h after irradiation, and cyclin E/A-Cdk2 activities recovered at intermediate rates. The super-recovery of cyclin E-Cdk2 coincided with the appearance of a small synchronous population of cells entering into S phase, consistent with transient G1-phase delay/recovery regulated by cyclin E-Cdk2, whereas the activities of cyclin A-Cdk's (75% cyclin A-Cdk2; 25% cyclin A-Cdc2 when inhibition was maximal) were correlated with rates of total DNA synthesis. Multivariate flow cytometry analyses of BrdU incorporation demonstrated that radiation-induced inhibition of DNA synthesis occurred predominantly within the last quarter of S phase and that the majority of the irradiated cells failed to enter G2 phase for 4-5 h. The recovery of cyclin A-Cdk activities coincided with increased levels of total DNA synthesis and BrdU incorporation into cells within the last quarter of S phase. Western blot analysis demonstrated that levels of Waf1/p21 did not increase during inhibition of cyclin A-Cdk's and DNA synthesis in the irradiated p53-mutated CHO cells; however, Cdc2 and Cdk2 exhibited increased levels of phosphotyrosine. The results (1) indicate that the transient G1-phase delay or G1/ S-phase checkpoint (Lee et al., Proc. Natl. Acad. Sci. USA 94, 526-531, 1997) is mediated by inhibition of cyclin E-Cdk2 and (2) point to the existence of a radiation-induced S-phase checkpoint located about 75% into S phase involving the inhibition of cyclin A-Cdk's by a p53/Waf1-independent pathway in CHO cells.

This content is only available as a PDF.
You do not currently have access to this content.