Mouse C3H 10T1/2 fibroblasts and human glioblastoma U87MG cells were exposed to cellular phone communication frequency radiations to investigate whether such exposure produces DNA damage in in vitro cultures. Two types of frequency modulations were studied: frequency-modulated continuous-wave (FMCW), with a carrier frequency of 835.62 MHz, and code-division multiple-access (CDMA) centered on 847.74 MHz. Exponentially growing (U87MG and C3H 10T1/2 cells) and plateau-phase (C3H 10T1/2 cells) cultures were exposed to either FMCW or CDMA radiation for varying periods up to 24 h in specially designed radial transmission lines (RTLs) that provided relatively uniform exposure with a specific absorption rate (SAR) of 0.6 W/kg. Temperatures in the RTLs were monitored continuously and maintained at 37 ± 0.3°C. Sham exposure of cultures in an RTL (negative control) and137 Cs γ-irradiated samples (positive control) were included with every experiment. The alkaline comet assay as described by Olive et al. (Exp. Cell Res. 198, 259-269, 1992) was used to measure DNA damage. No significant differences were observed between the test group exposed to FMCW or CDMA radiation and the sham-treated negative controls. Our results indicate that exposure of cultured mammalian cells to cellular phone communication frequencies under these conditions at an SAR of 0.6 W/kg does not cause DNA damage as measured by the alkaline comet assay.

This content is only available as a PDF.
You do not currently have access to this content.