Several electron scavengers that irreversibly form potential hydrogen-abstracting species upon one-electron reduction have been tested as agents for conversion of reductive damage to DNA bases into damage to the sugar-phosphate backbone. Electron spin resonance spectroscopy is employed to follow the production of radicals and transformations after irradiation. The scavengers tested included neutral (acrylamide, iodoacetamide) and cationic [triphenylsulfonium (${\rm Ph}_{2}{\rm S}^{+}$), o,o′-diphenylenebromonium (DPB) and o,o′-diphenylenebromonium (DPI)] compounds. Modification of reductive radiation damage in DNA is found to occur by scavenging of initial mobile electrons at low temperatures as well as thermally activated electron transfer from DNA electron-gain centers upon annealing. Electron transfer from the bases to hydrogen-bonded acrylamide has the smallest activation energy among other scavengers but produces a secondary alkyl radical incapable of abstracting hydrogen from the sugar-phosphate backbone. A primary alkyl radical generated from iodoacetamide has been shown to abstract preferentially from the thymine methyl group but not from deoxyribose moieties. Aryl radicals generated from aromatic onium salts such as${\rm Ph}_{2}{\rm S}^{+}$, and especially DPI and DPB, are found to be the agents which best abstract hydrogen atoms from the deoxyribose portion of DNA. The use of DPB and DPI as radiation modifiers allows the elimination of undesirable side reactions of aryl radicals and through hydrogen abstraction results in high yields of a species identified as the DNA${\rm C1}^{\prime \cdot}$ sugar radical. The second reaction pathway found for DPI and DPB in DNA is addition of an aryl radical to the thymine 5,6 double bond. Cysteamine is shown to preferentially eliminate sugar radicals upon annealing and to have little impact on the thermal stability of the thymine adduct radical.
Skip Nav Destination
Close
Article navigation
Research Article|
May 01 1998
Modification of the Reductive Pathway in Gamma-Irradiated DNA by Electron Scavengers: Targeting the Sugar-Phosphate Backbone
Radiat Res (1998) 149 (5): 422–432.
Citation
Yurii Razskazovskii, Marina Roginskaya, Michael D. Sevilla; Modification of the Reductive Pathway in Gamma-Irradiated DNA by Electron Scavengers: Targeting the Sugar-Phosphate Backbone. Radiat Res 1 May 1998; 149 (5): 422–432. doi: https://doi.org/10.2307/3579781
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner