We demonstrate by western analysis that the expression levels of TP53 (formerly known as p53), CDKN1A (formerly known as|${\rm p}21^{{\rm Waf1}}$|), CDC2 (formerly known as|${\rm p}34^{{\rm cdc2}}$|), CCNB1 (cyclin B1) and RAD51 are significantly modulated in confluent, density-inhibited human diploid cell populations exposed to doses where only a small fraction of the nuclei are actually traversed by an α-particle track. The extent of modulation of TP53 and CDKN1A is significantly reduced in the presence of the gap junction inhibitor lindane and in irradiated low-density cell populations. In situ immunofluorescence studies show that at doses where about 2% of the nuclei would be traversed by an α particle, induction of CDKN1A occurs in more cells than predicted. Furthermore, the induced cells are present in isolated aggregates of neighboring cells. Therefore, our studies at the gene expression level indicate that similar signaling pathways are induced in bystander cells that are not traversed by an α particle as in traversed cells, and that biological effects in cell populations are not restricted to the response of individual cells to the DNA damage they receive.
Skip Nav Destination
Article navigation
November 1998
Research Article|
November 01 1998
Intercellular Communication Is Involved in the Bystander Regulation of Gene Expression in Human Cells Exposed to Very Low Fluences of Alpha Particles
Radiat Res (1998) 150 (5): 497–504.
Citation
Edouard I. Azzam, Sonia M. de Toledo, Tamara Gooding, John B. Little; Intercellular Communication Is Involved in the Bystander Regulation of Gene Expression in Human Cells Exposed to Very Low Fluences of Alpha Particles. Radiat Res 1 November 1998; 150 (5): 497–504. doi: https://doi.org/10.2307/3579865
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Effects of Radiation on Blood Pressure and Body Weight in the Spontaneously Hypertensive Rat Model. Are Radiation Effects on Blood Pressure Affected by Genetic Background?
Norio Takahashi, Munechika Misumi, Yasuharu Niwa, Hideko Murakami, Waka Ohishi, Toshiya Inaba, Akiko Nagamachi, Satoshi Tanaka, Ignacia Braga Tanaka, III, Gen Suzuki
Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958–2009
Eric J. Grant, Alina Brenner, Hiromi Sugiyama, Ritsu Sakata, Atsuko Sadakane, Mai Utada, Elizabeth K. Cahoon, Caitlin M. Milder, Midori Soda, Harry M. Cullings, Dale L. Preston, Kiyohiko Mabuchi, Kotaro Ozasa
Studies of the Mortality of Atomic Bomb Survivors, Report 14, 1950–2003: An Overview of Cancer and Noncancer Diseases
Kotaro Ozasa, Yukiko Shimizu, Akihiko Suyama, Fumiyoshi Kasagi, Midori Soda, Eric J. Grant, Ritsu Sakata, Hiromi Sugiyama, Kazunori Kodama
Radiofrequency Fields and Calcium Movements Into and Out of Cells
Andrew Wood, Ken Karipidis