Abstract

Matsubara, J., Turcanu, V., Poindron, P. and Ina, Y. Immune Effects of Low-Dose Radiation: Short-Term Induction of Thymocyte Apoptosis and Long-Term Augmentation of T-Cell-Dependent Immune Responses.

We and others have shown that low-dose X or γ irradiation of mice leads to an increase in their survival after a subsequent lethal high-dose irradiation. The greatest increase in radioresistance appears at a fixed window of dose and time, e.g. 8 weeks after 5–10 cGy or 2 weeks after 50 cGy preirradiation. We show that low-dose irradiation induces thymocyte apoptosis with a maximal level at 6 h postirradiation that returns to background levels after 24 h. At the same time, we observed no morphological alteration of splenocytes and no early modification of the intensity of T-cell-dependent immune responses as measured by plaque-forming cell (PFC) counts. Nevertheless, we found that PFCs were increased 2 weeks after 50 cGy irradiation, which is the same time at which mice expressed the optimal increase in survival after a second lethal irradiation. We also examined thymocyte apoptosis and spleen PFCs in mice subjected to other stress-inducing pretreatments. Our results emphasize the existence of a lag time between the time of low-dose irradiation in vivo and the appearance of radioresistance. A mechanism that interconnects an environmental stimulus with the response of the animal is proposed based on the evidence presented here and reported in the literature.

You do not currently have access to this content.