Abstract

Li, Y. Q. and Wong, C. S. Radiation-Induced Apoptosis in the Neonatal and Adult Rat Spinal Cord.

This study was designed to characterize radiation-induced apoptosis in the spinal cord of the neonatal and young adult rat. Spinal cords (C2–T2) of 1-, 2- and 10-week-old rats were irradiated with a single dose of 8, 18 or 22 Gy. Apoptosis was assessed histologically according to its specific morphological features or by using the TUNEL assay. Cell proliferation was assessed immunohistochemically using BrdU. Identities of cell types undergoing apoptosis were assessed using immunohistochemistry or in situ hybridization using markers for neurons, glial progenitor cells, microglia, oligodendrocytes and astrocytes. The time course of radiation-induced apoptosis in 1- or 2-week-old rat spinal cord was similar to that in the young adult rat spinal cord. A peak response was observed at about 8 h after irradiation, and the apoptosis index returned to the levels in nonirradiated spinal cords at 24 h. The neonatal rat spinal cord demonstrated increased apoptosis compared to the adult. Values for total yield of apoptosis over 24 h induced by 8 Gy in the neonatal rat spinal cord were significantly greater than that in the adult. Immunohistochemistry studies using Leu7, galactocerebroside, Rip and adenomatous polyposis coli tumor suppressor protein indicated that most apoptotic cells were cells of the oligodendroglial lineage regardless of the age of the animal. No evidence of Gfap or factor VIII-related antigen-positive apoptotic cells was observed, and there was a small number of apoptotic microglial cells (lectin-Rca1 positive) in the neonatal and adult rat spinal cord. In the neonatal but not adult rat spinal cord, about 10% of the apoptotic cells appeared to be neurons and were immunoreactive for synaptophysin. Labeling indices (LI) for BrdU in nonirradiated 1- and 2-week-old rat spinal cord were 20.0 and 16.3%, respectively, significantly greater than the LI of 1.0% in the 10-week-old rat spinal cord. At 8 h after a single dose of 8 Gy, 13.4% of the apoptotic cells were BrdU-positive in 10-week-old rat spinal cord, whereas 62.4 and 44.1% of the apoptotic cells showed BrdU incorporation in 1- and 2-week-old rat spinal cord, respectively. Regardless of the age of the animal, the apoptosis indices in BrdU-positive cells were greater than those in BrdU-negative cells. We conclude that the neonatal spinal cord demonstrates a greater level of apoptosis after exposure to ionizing radiation than the young adult spinal cord. This increase in apoptosis may be associated in part with the greater percentage of proliferating cells in the neonatal spinal cord, which demonstrate a greater level of radiation-induced apoptosis than nonproliferating cells.

You do not currently have access to this content.