Qutob, S. S., Multani, A. S., Pathak, S., Feng, Y., Kendal, W. S. and Ng, C. E. Comparison of the X-Radiation, Drug and Ultraviolet-Radiation Responses of Clones Isolated from a Human Colorectal Tumor Cell Line. Radiat. Res. 161, 326– 334 (2004).

We isolated several clones with a wide range of responses to X radiation from an unirradiated human colorectal (HCT 116) tumor cell line. The responses of one of these clones (HCT116-Clone10) and nine other clones to either fractionated or acute (i.e. single, nonfractionated doses) X irradiation in vitrowas similar to that of the parental cell line. By contrast, after the same types of treatment, another clone (HCT116-Clone2) manifested a significantly increased survival whereas a third clone (HCT116-CloneK) manifested a significantly decreased survival relative to the parental cell line. This suggested that they were, respectively, a radioresistant and a radiosensitive clone. All three clones (clones 2, 10, K) retained their tumorigenic phenotype and formed tumors in nude mice. G-banding studies demonstrated that they were of human origin and were derived from the same parental cell line. The metaphases of HCT116-Clone2 demonstrated features commonly associated with genomic instability (i.e. mitotic catastrophe including chromosome and chromatid breaks, dicentrics and additional nonclonal markers). Data obtained by quantitative fluorescence in situhybridization (Q- FISH) analysis failed to demonstrate any apparent correlation between the radiosensitivity and the relative telomere content of these three clones. Interestingly, HCT116-CloneK was the most resistant to several chemotherapeutic drugs (topotecan, camptothecin, etoposide and cisplatin) with diverse mechanisms of action. Also, there were no significant differences in the survivals of the three clones after treatment with UV radiation. Because of the lack of overlap among the relative sensitivities of these clones to X radiation, chemotherapeutic drugs and UV radiation, these clones may be useful models for evaluating the genetic basis of the response of human tumor cells to these treatment agents both in vitroand in vivo.

You do not currently have access to this content.