Abstract

Inoue, M., Shen, G-P., Chaudhry, M. A., Galick, H., Blaisdell, J. O. and Wallace, S. S. Expression of the Oxidative Base Excision Repair Enzymes is not Induced in TK6 Human Lymphoblastoid Cells after Low Doses of Ionizing Radiation. Radiat. Res. 161, 409–417 (2004).

Most of the DNA damage produced by ionizing radiation is repaired by the base excision repair (BER) pathway. To determine whether the BER genes were up-regulated by low doses of ionizing radiation, we investigated their expression in TK6 human lymphoblastoid cells by measuring mRNA levels using real-time quantitative PCR. No induction at the transcriptional level of any of the base excision repair genes, NTH1 (NTHL1), OGG1, NEIL1, NEIL2, NEIL3, APE1, POLB, or accessory protein genes, LIG3, XRCC1 or XPG, was found at γ-radiation doses ranging from 1 cGy to 2 Gy in a 24-h period. As has been measured in other cell lines, a dose-dependent induction of CDKN1A (WAF1) mRNA levels was observed in TK6 cells in the dose range of 0.5 to 2.0 Gy. We also examined BER enzyme activity on 8-oxoguanine-, dihydrouracil- and furan-containing oligonucleotide substrates and found no increase in extracts of TK6 cells after γ-ray doses of 0.5–2.0 Gy. These data were corroborated by Western blot analysis of APE1 and NTH1, suggesting that the BER enzymes are also not up-regulated at the post-transcriptional level after ionizing radiation exposure.

You do not currently have access to this content.