Abstract

Hirobe, T., Eguchi-Kasai, K. and Murakami, M. Effects of Carbon-Ion Radiation on the Postnatal Development of Mice and on the Yield of White Spots in the Mid-ventrum and Tail Tips. Radiat. Res. 162, 580–584 (2004).

Pregnant female C57BL/10JHir mice were irradiated whole-body at 9 days of gestation with a single acute dose of carbon-ion radiation. The average linear energy transfer (LET) of the carbon ions was 50 keV/μm within a spread-out Bragg peak (SOBP). The effects were studied by scoring changes in the postnatal development of the mice as well as in the pigmentation of the cutaneous coats and tail tips of their offspring 22 days after birth. The percentage of live births was reduced in mice exposed to carbon ions at doses greater than 0.5 Gy. The survival to day 22 was also reduced in mice exposed to carbon ions at doses greater than 0.75 Gy. Moreover, the body weight at day 22 was reduced in mice exposed to carbon ions at doses greater than 0.1 Gy. A comparison of the survival to day 22 after exposure to carbon ions with our previous results for 60Co γ rays indicated that carbon ions were twice as effective as γ rays. White spots were found in the mid-ventrum as well as in the tail tips of offspring exposed to carbon ions in utero. The frequency and the size of the white spots in the mid-ventrum and in the tail tips increased as the dose increased. Carbon ions appear to be slightly more effective than the γ rays used in our previous study. In the ventral white spots, no melanocytes were observed in the epidermis, dermis and hair follicles. These results indicate that prenatal exposure to carbon ions has a greater effect on the postnatal development and survival of mice than does exposure to γ rays, and that the relative biological effectiveness is greater than that for effects on melanocyte development.

You do not currently have access to this content.