Rola, R., Fishman, K., Baure, J., Rosi, S., Lamborn, K. R., Obenaus, A., Nelson, G. A. and Fike, J. R. Hippocampal Neurogenesis and Neuroinflammation after Cranial Irradiation with 56Fe Particles. Radiat. Res. 169, 626–632 (2008).

Exposure to heavy-ion radiation is considered a potential health risk in long-term space travel. In the central nervous system (CNS), loss of critical cellular components may lead to performance decrements that could ultimately compromise mission goals and long-term quality of life. Hippocampal-dependent cognitive impairments occur after exposure to ionizing radiation, and while the pathogenesis of this effect is not yet clear, it may involve the production of newly born neurons (neurogenesis) in the hippocampal dentate gyrus. We irradiated mice with 0.5–4 Gy of 56Fe ions and 2 months later quantified neurogenesis and numbers of activated microglia as a measure of neuroinflammation in the dentate gyrus. Results showed that there were few changes after 0.5 Gy, but that there was a dose-related decrease in hippocampal neurogenesis and a dose-related increase in numbers of newly born activated microglia from 0.5–4.0 Gy. While those findings were similar to what was reported after X irradiation, there were also some differences, particularly in the response of newly born glia. Overall, this study showed that hippocampal neurogenesis was sensitive to relatively low doses of 56Fe particles, and that those effects were associated with neuroinflammation. Whether these changes will result in functional impairments or if/how they can be managed are topics for further investigation.

You do not currently have access to this content.