Abstract

Sasaki, M. S., Nomura, T., Ejima, Y., Utsumi, H., Endo, S., Saito, I., Itoh, T. and Hoshi, M. Experimental Derivation of Relative Biological Effectiveness of A-Bomb Neutrons in Hiroshima and Nagasaki and Implications for Risk Assessment. Radiat. Res. 170, 101–117 (2008).

Epidemiological data on the health effects of A-bomb radiation in Hiroshima and Nagasaki provide the framework for setting limits for radiation risk and radiological protection. However, uncertainty remains in the equivalent dose, because it is generally believed that direct derivation of the relative biological effectiveness (RBE) of neutrons from the epidemiological data on the survivors is difficult. To solve this problem, an alternative approach has been taken. The RBE of polyenergetic neutrons was determined for chromosome aberration formation in human lymphocytes irradiated in vitro, compared with published data for tumor induction in experimental animals, and validated using epidemiological data from A-bomb survivors. The RBE of fission neutrons was dependent on dose but was independent of the energy spectrum. The same RBE regimen was observed for lymphocyte chromosome aberrations and tumors in mice and rats. Used as a weighting factor for A-bomb survivors, this RBE system was superior in eliminating the city difference in chromosome aberration frequencies and cancer mortality. The revision of the equivalent dose of A-bomb radiation using DS02 weighted by this RBE system reduces the cancer risk by a factor of 0.7 compared with the current estimates using DS86, with neutrons weighted by a constant RBE of 10.

You do not currently have access to this content.