Abstract

Ojima, M., Ban, N. and Kai, M. DNA Double-Strand Breaks Induced by Very Low X-Ray Doses are Largely due to Bystander Effects. Radiat. Res. 170, 365–371 (2008).

Phosphorylated ATM immunofluorescence staining was used to investigate the dose–response relationship for the number of DNA double-strand breaks (DSBs) induced in primary normal human fibroblasts irradiated with doses from 1.2 to 200 mGy. The induction of DSBs showed a supralinear dose–response relationship. Radiation-induced bystander effects may explain these findings. To test this hypothesis, the number of DSBs in cells treated with lindane, an inhibitor of radiation-induced bystander effects, prior to X irradiation was assessed; a supralinear dose–response relationship was not observed. Moreover, the number of DSBs obtained by subtracting the number of phosphorylated ATM foci in lindane-treated cells from the number of phosphorylated ATM foci in untreated cells was proportional to the dose at low doses (1.2–5 mGy) and was saturated at doses from 10–200 mGy. Thus the increase in the number of DSBs in the range of 1.2–5 mGy was largely due to radiation-induced bystander effects, while at doses >10 mGy, the DSBs may be induced mainly by dose-dependent direct radiation effects and partly by dose-independent radiation-induced bystander effects. The findings in our present study provide direct evidence of the dose–response relationship for radiation-induced bystander effects from broad-beam X rays.

You do not currently have access to this content.