Reactive oxygen species (ROS) are believed to be involved in radiation-induced xerostomia, and the application of antioxidants may be a promising method for treating patients suffering from salivary gland dysfunction. In this study, we examined the ability of the antioxidant superoxide dismutase (SOD) to restore radiation-induced salivary gland dysfunction using a mouse model of radiation-induced salivary gland hypofunction and ultraviolet B (UVB)-irradiated human salivary gland cells. We administered lecithinized SOD (PC-SOD) prior to and after irradiation and measured the amount of saliva secreted. To confirm ROS generation, flow cytometry was performed using an oxidant-sensitive fluorescent dye, dihydroethidium, and CM-H2DCFDA. While no significant decrease in saliva secretion was observed after irradiation in the mice that were treated with PC-SOD, a significant reduction in saliva secretion was noted in the irradiated mice that were not treated with PC-SOD. Furthermore, flow cytometry clearly revealed that PC-SOD eliminated superoxide (O2) induced by UVB radiation. These results suggested that PC-SOD may protect against exocrine gland dysfunction induced by radiation, presumably by rapidly converting O2 to hydrogen peroxide. We believe that our results may advance the potential application of antioxidants for the prevention of ROS-induced xerostomia.

You do not currently have access to this content.