A radiation-induced bystander response, which is generally defined as a cellular response that is induced in nonirradiated cells that received bystander signals from directly irradiated cells within an irradiated cell population. In our earlier X-ray microbeam studies, bystander cell killing in normal human fibroblasts had a parabolic relationship to the irradiation dose. To elucidate the role of p53 in the bystander cell killing, the effects were assessed using human non-small cell lung cancer cells expressing wild-type or temperature-sensitive mutated p53. The surviving fraction of bystander wild-type p53 cells showed a parabolic relationship to the irradiation dose; survival was steeply reduced up to 0.45 Gy, recovered toward to 2 Gy, and remained at control levels up to 5 Gy. In contrast, in the mutated p53 cells at a nonpermissive temperature, the surviving fraction was steeply reduced up to 1 Gy and remained at the reduced level up to 5 Gy. When the mutated p53 cells were incubated at a permissive temperature, the decrease in the surviving fraction at 2 Gy was suppressed. The wild-type p53 cells were not only restrained in releasing bystander signals at 2 Gy, but were also resistant to the signals released by the mutated p53 cells. These results suggest that the X-ray-induced bystander cell killing depends on both the irradiation dose and the p53 status of the targeted cells and the bystander cells.

You do not currently have access to this content.