Polonium-210 is a naturally occurring radioactive element that decays by emitting an alpha particle. It is in the air we breathe and also a component of tobacco smoke. Polonium-210 is used as an anti-static device in printing presses and gained widespread notoriety in 2006 after the poisoning and subsequent death of a Russian citizen in London. More is known about the lethal effects of polonium-210 at high doses than about late effects from low doses. Cancer mortality was examined among 7,270 workers at the Mound nuclear facility near Dayton, OH where polonium-210 was used (1944–1972) in combination with beryllium as a source of neutrons for triggering nuclear weapons. Other exposures included external gamma radiation and to a lesser extent plutonium-238, tritium and neutrons. Vital status and cause of death was determined through 2009. Standardized mortality ratios (SMRs) were computed for comparisons with the general population. Lifetime occupational doses from all places of employment were sought and incorporated into the analysis. Over 200,000 urine samples were analyzed to estimate radiation doses to body organs from polonium and other internally deposited radionuclides. Cox proportional hazards models were used to evaluate dose-response relationships for specific organs and tissues. Vital status was determined for 98.7% of the workers of which 3,681 had died compared with 4,073.9 expected (SMR 0.90; 95% CI 0.88–0.93). The mean dose from external radiation was 26.1 mSv (maximum 939.1 mSv) and the mean lung dose from external and internal radiation combined was 100.1 mSv (maximum 17.5 Sv). Among the 4,977 radiation workers, all cancers taken together (SMR 0.86; 95% CI 0.79–0.93), lung cancer (SMR 0.85; 95% CI 0.74–0.98), and other types of cancer were not significantly elevated. Cox regression analysis revealed a significant positive dose-response trend for esophageal cancer [relative risk (RR) and 95% confidence interval at 100 mSv of 1.54 (1.15–2.07)] and a negative dose-response trend for liver cancer [RR (95% CI) at 100 mSv of 0.55 (0.23–1.32)]. For lung cancer the RR at 100 mSv was 1.00 (95% CI 0.97–1.04) and for all leukemias other than chronic lymphocytic leukemia (CLL) it was 1.04 (95% CI 0.63–1.71). There was no evidence that heart disease was associated with exposures [RR at 100 mSv of 1.06 (0.95–1.18)]. Assuming a relative biological effectiveness factor of either 10 or 20 for polonium and plutonium alpha particle emissions had little effect on the dose-response analyses. Polonium was the largest contributor to lung dose, and a relative risk of 1.04 for lung cancer at 100 mSv could be excluded with 95% confidence. A dose related increase in cancer of the esophagus was consistent with a radiation etiology but based on small numbers. A dose-related decrease in liver cancer suggests the presence of other modifying factors of risk and adds caution to interpretations. The absence of a detectable increase in total cancer deaths and lung cancer in particular associated with occupational exposures to polonium (mean lung dose 159.8 mSv), and to plutonium to a lesser extent (mean lung dose 13.7 mSv), is noteworthy but based on small numbers. Larger combined studies of U.S. workers are needed to clarify radiation risks following prolonged exposures and radionuclide intakes.
Skip Nav Destination
Article navigation
1 February 2014
other|
February 14 2014
Mortality Among Mound Workers Exposed to Polonium-210 and Other Sources of Radiation, 1944–1979
John D. Boice, Jr.;
John D. Boice, Jr.
1
aNational Council on Radiation Protection and Measurements, Bethesda, Maryland
bDivision of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
1 Address for correspondence: National Council on Radiation Protection and Measurements, 7910 Woodmont Ave., Ste. 400, Bethesda, MD 20814. email: john.boice@vanderbilt.edu.
Search for other works by this author on:
Sarah S. Cohen;
Sarah S. Cohen
cEpidStat Institute, Ann Arbor, Michigan
Search for other works by this author on:
Michael T. Mumma;
Michael T. Mumma
dInternational Epidemiology Institute, Rockville, Maryland
Search for other works by this author on:
Elizabeth Dupree Ellis;
Elizabeth Dupree Ellis
eOak Ridge Associated Universities, Oak Ridge, Tennessee
Search for other works by this author on:
Donna L. Cragle;
Donna L. Cragle
eOak Ridge Associated Universities, Oak Ridge, Tennessee
Search for other works by this author on:
Keith F. Eckerman;
Keith F. Eckerman
fOak Ridge National Laboratory, Oak Ridge, Tennessee
Search for other works by this author on:
Phillip W. Wallace;
Phillip W. Wallace
eOak Ridge Associated Universities, Oak Ridge, Tennessee
Search for other works by this author on:
Bandana Chadda;
Bandana Chadda
dInternational Epidemiology Institute, Rockville, Maryland
Search for other works by this author on:
Jennifer S. Sonderman;
Jennifer S. Sonderman
dInternational Epidemiology Institute, Rockville, Maryland
Search for other works by this author on:
Laurie D. Wiggs;
Laurie D. Wiggs
gLos Alamos National Laboratory, Los Alamos, New Mexico
Search for other works by this author on:
Bonnie S. Richter;
Bonnie S. Richter
hOffice of Health and Security, Department of Energy, Washington, D.C.
Search for other works by this author on:
Richard W. Leggett
Richard W. Leggett
fOak Ridge National Laboratory, Oak Ridge, Tennessee
Search for other works by this author on:
Radiat Res (2014) 181 (2): 208–228.
Citation
John D. Boice, Sarah S. Cohen, Michael T. Mumma, Elizabeth Dupree Ellis, Donna L. Cragle, Keith F. Eckerman, Phillip W. Wallace, Bandana Chadda, Jennifer S. Sonderman, Laurie D. Wiggs, Bonnie S. Richter, Richard W. Leggett; Mortality Among Mound Workers Exposed to Polonium-210 and Other Sources of Radiation, 1944–1979. Radiat Res 1 February 2014; 181 (2): 208–228. doi: https://doi.org/10.1667/RR13395.1
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Radiofrequency Fields and Calcium Movements Into and Out of Cells
Andrew Wood, Ken Karipidis
Studies of the Mortality of Atomic Bomb Survivors, Report 14, 1950–2003: An Overview of Cancer and Noncancer Diseases
Kotaro Ozasa, Yukiko Shimizu, Akihiko Suyama, Fumiyoshi Kasagi, Midori Soda, Eric J. Grant, Ritsu Sakata, Hiromi Sugiyama, Kazunori Kodama
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner
Predictive Radiation Oncology – A New NCI–DOE Scientific Space and Community
Jeffrey C. Buchsbaum, David A. Jaffray, Demba Ba, Lynn L. Borkon, Christine Chalk, Caroline Chung, Matthew A. Coleman, C. Norman Coleman, Maximilian Diehn, Kelvin K. Droegemeier, Heiko Enderling, Michael G. Espey, Emily J. Greenspan, Christopher M. Hartshorn, Thuc Hoang, H. Timothy Hsiao, Cynthia Keppel, Nathan W. Moore, Fred Prior, Eric A. Stahlberg, Georgia Tourassi, Karen E. Willcox