We have previously reported that circulating interleukin-18 (IL-18) can be used as a radiation biomarker in mice, minipigs and nonhuman primates. In this study, we further determined the serum levels of IL-18 binding protein (IL-18BP), a natural endogenous antagonist of IL-18, in CD2F1 mice 1–13 days after total-body gamma irradiation (TBI) with different doses (5–10 Gy). We compared the changes in blood lymphocyte, neutrophil and platelet counts as well as the activation of the proapoptotic executioner caspase-3 and caspase-7, and the expression of the inflammatory factor cyclooxygenase 2 (COX-2) in spleen cells, with the changes of IL-18BP and IL-18 in mouse serum. We also evaluated the significance, sensitivity and specificity of alterations in radiation-induced IL-18BP. IL-18 increased from day 1–13 after TBI in a dose-dependent manner that was paralleled with an increase in IL-18 receptor alpha (IL-18Rα) in irradiated mouse spleen cells. IL-18BP rapidly increased (25–63 fold) in mouse serum on day 1 after different doses of TBI. However, it returned to baseline within 3 days after 5–7 Gy doses and within 7 days after 8 Gy dose, and was unaltered thereafter. In contrast, high doses of radiation (9 and 10 Gy) significantly sustained a higher level of IL-18BP in mouse serum and later induced a second phase of increase in IL-18BP on day 9–13 after irradiation, which coincided with the onset of animal mortality. Consistent with this observation, highly activated caspase-3 and −7 in 8–10 Gy irradiated mouse spleen cells exhibited reduced or no activity 24 h after 5 Gy, although radiation induced an inflammatory response, as shown by COX-2 expression in all irradiated cells. Our data suggest that the radiation-induced differential elevation of IL-18 and IL-18BP in animal serum is a dynamic and discriminative indicator of the severity of injury after exposure to ionizing radiation. These findings support the inclusion of the dual biomarkers IL-18BP and IL-18 in the development of a multifactorial strategy for radiation dose and injury assessment.

You do not currently have access to this content.