Radiation-induced impairment of neurogenesis in the hippocampal dentate gyrus is a concern due to its reported association with cognitive detriments after radiotherapy for brain cancers and the possible risks to astronauts chronically exposed to space radiation. Here, we have extended our recent work in a mouse model of impaired neurogenesis after exposure to low-linear energy transfer (LET) radiation to heavy ion irradiation. To our knowledge, this is the first report of a predictive mathematical model of radiation-induced changes to neurogenesis for a variety of radiation types after acute or fractionated irradiation. We used a system of nonlinear ordinary differential equations (ODEs) to represent age, time after exposure and dose-dependent changes to several cell populations participating in neurogenesis, as reported in mouse experiments. We considered four compartments to model hippocampal neurogenesis and, consequently, the effects of radiation in altering neurogenesis: 1. neural stem cells (NSCs); 2. neuronal progenitor cells or neuroblasts (NB); 3. immature neurons (ImN); and 4. glioblasts (GB), with additional consideration of microglial activation. The model describes the negative feedback regulation on early and late neuronal proliferation after irradiation, and the dynamics of the age dependence of neurogenesis. We compared our model to experimental data for X rays, and protons, carbon and iron particles, including data for fractionated iron-particle irradiation. Heavy-ion irradiation is predicted to lead to poor recovery or no recovery from impaired neurogenesis at doses as low as 0.5 Gy in mice. This is only partially ameliorated by dose fractionation, which suggests important implications for Hardon therapy near the Bragg peak, and possibly for space radiation exposures as well. Predictions of the threshold doses where neurogenesis recovery fails for given radiation types are described, and the role of subthreshold transient impairments are briefly discussed.
Skip Nav Destination
Close
Article navigation
1 December 2016
Research Article|
December 07 2016
Modeling Heavy-Ion Impairment of Hippocampal Neurogenesis after Acute and Fractionated Irradiation
Eliedonna Cacao
;
Eliedonna Cacao
Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, Nevada
Search for other works by this author on:
Francis A. Cucinotta
Francis A. Cucinotta
1
Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, Nevada
1Address for correspondence: University of Nevada, Las Vegas, Department of Diagnostic Sciences and Health Physics, Box 453037, Las Vegas, NV 89195-3037; email: francis.cucinotta@unlv.edu.
Search for other works by this author on:
Radiat Res (2016) 186 (6): 624–637.
Citation
Eliedonna Cacao, Francis A. Cucinotta; Modeling Heavy-Ion Impairment of Hippocampal Neurogenesis after Acute and Fractionated Irradiation. Radiat Res 1 December 2016; 186 (6): 624–637. doi: https://doi.org/10.1667/RR14569.1
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner