In preclinical studies, several tumor cell lines have demonstrated an epithelial-to-mesenchymal (EMT)-dependent enhancement in migration when exposed to ionizing radiation at doses of 10 Gy or higher. The goal of this study was to determine whether a lower dose (2.3 Gy) of radiation enhances breast tumor cell migration, and to elucidate the potential contribution of EMT and pro-migratory secreted factors in radiation-induced tumor cell migration. Three human breast cancer cell lines were irradiated and imaged in real-time over 72 h to quantify changes in single cell migration, chemotactic migration and invasion. EMT markers were assessed and conditioned media from irradiated cells was used to determine whether cellular migration was influenced by secreted factors. We observed that a 2.3 Gy dose of radiation did not induce EMT in epithelial-like MCF-7 cells and did not increase the ability of MCF-7 cells or highly motile MDA-MB-231 LM2-4 cells to migrate. In addition, a 2.3 Gy dose significantly increased MDA-MB-231 migration, as detected by single cell tracking and transwell migration assays, but did not increase invasion of MDA-MB-231 cells through reconstituted basement membrane. Cells from all three cell lines migrated further from their point of origin after irradiation, suggesting the cells may be responding to soluble factors produced by other irradiated cells. Consistently, conditioned media derived from 2.3 Gy irradiated MDA-MB-231 cells contained increased levels of several pro-migratory chemokines, and conditioned media from irradiated cells enhanced the migration of nonirradiated MDA-MB-231 cells. These findings indicate that 2.3 Gy dose of radiation is sufficient to increase migration of MDA-MB-231 cells and to alter the single cell migration behavior of three human breast cancer cell lines. Our data suggest the involvement of soluble factors released by 2.3 Gy irradiated cells, and support further in vitro and in vivo studies to identify potential therapeutic targets to prevent tumor cell migration after irradiation.
Skip Nav Destination
Article navigation
1 October 2017
REGULAR ARTICLES|
August 01 2017
Ionizing Radiation Enhances Breast Tumor Cell Migration In Vitro
Ada G. H. Young;
Ada G. H. Young
1
aIntegrative Oncology, BC Cancer Agency, Vancouver, Canada
bPathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
Search for other works by this author on:
Kevin L. Bennewith
Kevin L. Bennewith
2
aIntegrative Oncology, BC Cancer Agency, Vancouver, Canada
bPathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
2Address for correspondence: No. 10-108, 675 West 10th Ave, Vancouver, British Columbia, Canada, V5Z 1L3; email: [email protected].
Search for other works by this author on:
Radiat Res (2017) 188 (4): 381–391.
Article history
Received:
January 05 2017
Accepted:
June 08 2017
Citation
Ada G. H. Young, Kevin L. Bennewith; Ionizing Radiation Enhances Breast Tumor Cell Migration In Vitro. Radiat Res 1 October 2017; 188 (4): 381–391. doi: https://doi.org/10.1667/RR14738.1
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Dosimetry: Was and Is an Absolute Requirement for Quality Radiation Research
Daniel Johnson, H. Harold Li, Bruce F. Kimler
Calculations of Mean Quality Factors and Their Implications for Organ-specific Relative Biological Effectiveness (RBE) in Analysis of Radiation-related Risk in the Atomic Bomb Survivors
Shota Shimizu, Tatsuhiko Sato, Sachiyo Funamoto, Richard Sposto, Harry M. Cullings, Akira Endo, Stephen D. Egbert, Michiaki Kai
Studies of the Mortality of Atomic Bomb Survivors, Report 14, 1950–2003: An Overview of Cancer and Noncancer Diseases
Kotaro Ozasa, Yukiko Shimizu, Akihiko Suyama, Fumiyoshi Kasagi, Midori Soda, Eric J. Grant, Ritsu Sakata, Hiromi Sugiyama, Kazunori Kodama
Long-Term Effects of the Rain Exposure Shortly after the Atomic Bombings in Hiroshima and Nagasaki
Ritsu Sakata, Eric J. Grant, Kyoji Furukawa, Munechika Misumi, Harry Cullings, Kotaro Ozasa, Roy E. Shore
Hepatic Stellate Cell-mediated Increase in CCL5 Chemokine Expression after X-ray Irradiation Determined In Vitro and In Vivo
Masataka Taga, Kengo Yoshida, Shiho Yano, Keiko Takahashi, Seishi Kyoizumi, Megumi Sasatani, Keiji Suzuki, Tomohiro Ogawa, Yoichiro Kusunoki, Tatsuaki Tsuruyama