Individuals with significant intakes of plutonium (Pu) are typically treated with chelating agents, such as the trisodium salt form of calcium diethylenetriaminepentaacetate (CaNa3-DTPA, referred to hereafter as Ca-DTPA). Currently, there is no recommended approach for simultaneously modeling plutonium biokinetics during and after chelation therapy. In this study, an improved modeling system for plutonium decorporation was developed. The system comprises three individual model structures describing, separately, the distinct biokinetic behaviors of systemic plutonium, intravenously injected Ca-DTPA and in vivo-formed Pu-DTPA chelate. The system was linked to ICRP Publication 100, “Human Alimentary Tract Model for Radiological Protection” and NCRP Report 156, Development of a Biokinetic Model for Radionuclide-Contaminated Wounds and Procedures for Their Assessment, Dosimetry and Treatment.” Urine bioassay and chelation treatment data from an occupationally-exposed individual were used for model development. Chelation was assumed to occur in the blood, soft tissues, liver and skeleton. The coordinated network for radiation dosimetry approach to decorporation modeling was applied using a chelation constant describing the secondorder, time-dependent kinetics of the in vivo chelation reaction. When using the proposed system of models for plutonium decorporation, a significant improvement of the goodness-of-fit to the urinary excretion data was observed and more accurate predictions of postmortem plutonium retention in the skeleton, liver and wound site were achieved. © 2019 by Radiation Research Society
Skip Nav Destination
Close
Article navigation
1 February 2019
Research Article|
December 19 2018
Improved Modeling of Plutonium-DTPA Decorporation
Sara Dumit
;
Sara Dumit
U.S. Transuranium and Uranium Registries, Washington State University, Richland, Washington 99354–4959
2Schadilov AE. Plutonium biokinetics following a wound injury and considering the effect of DTPA therapy [dissertation], Moscow: Federal Medical and Biological Agency; 2010 (in Russian).
Search for other works by this author on:
Maia Avtandilashvili
;
Maia Avtandilashvili
U.S. Transuranium and Uranium Registries, Washington State University, Richland, Washington 99354–4959
Search for other works by this author on:
Daniel J. Strom
;
Daniel J. Strom
U.S. Transuranium and Uranium Registries, Washington State University, Richland, Washington 99354–4959
Search for other works by this author on:
Stacey L. McComish
;
Stacey L. McComish
U.S. Transuranium and Uranium Registries, Washington State University, Richland, Washington 99354–4959
Search for other works by this author on:
George Tabatadze
;
George Tabatadze
U.S. Transuranium and Uranium Registries, Washington State University, Richland, Washington 99354–4959
Search for other works by this author on:
Sergei Y. Tolmachev
Sergei Y. Tolmachev
U.S. Transuranium and Uranium Registries, Washington State University, Richland, Washington 99354–4959
Search for other works by this author on:
Radiat Res (2019) 191 (2): 201–210.
Citation
Sara Dumit, Maia Avtandilashvili, Daniel J. Strom, Stacey L. McComish, George Tabatadze, Sergei Y. Tolmachev; Improved Modeling of Plutonium-DTPA Decorporation. Radiat Res 1 February 2019; 191 (2): 201–210. doi: https://doi.org/10.1667/RR15188.1
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner