In response to concerns over possible radiological or nuclear incidents, the Radiation and Nuclear Countermeasures Program within the National Institute of Allergy and Infectious Diseases (NIAID) was tasked by the U.S. Department of Health and Human Services to support development of medical countermeasures (MCM) to treat the acute and delayed injuries that can result from radiation exposure. To date, the only three drugs approved by the U.S. Food and Drug Administration for treatment of acute radiation syndrome are growth factors targeting granulocyte (Neupogen® or Neulasta®) or granulocyte and macrophage (Leukine®) hematopoietic cell lineages. Although these are currently stockpiled for deployment in response to a mass casualty scenario, these growth factors will likely be administered in a scarce-resources environment and availability may be limited. Therefore, there is growing interest in understanding the role that these growth factors play in mitigating radiation damage, to optimize their use and maximize the number of people who can be treated. For these reasons, the NIAID and the Radiation Injury Treatment Network organized a workshop to explore the use of growth factors and other cytokines as MCMs in the treatment of radiation-induced injuries. Subject matter experts from government, industry and academia gathered at this workshop to discuss the concept of operations, triage and treatment, administration to diverse civilian populations, growth factors under development for radiation indications, and how the practice of medicine can inform other potential approaches.
Skip Nav Destination
Article navigation
1 July 2019
Article Commentary|
May 07 2019
Use of Growth Factors and Cytokines to Treat Injuries Resulting from a Radiation Public Health Emergency
Zulmarie Perez Horta;
Zulmarie Perez Horta
1
aRadiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
1Address for correspondence: DAIT, NIAID, NIH, 5601 Fishers Lane, Room 7A61, Rockville, MD 20852; email: zulmarie.perezhorta@nih.gov.
Search for other works by this author on:
Cullen M. Case, Jr.;
Cullen M. Case, Jr.
bRadiation Injury Treatment Network (RITN), Minneapolis, Minnesota
Search for other works by this author on:
Andrea L. DiCarlo
Andrea L. DiCarlo
aRadiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
Search for other works by this author on:
Radiat Res (2019) 192 (1): 92–97.
Article history
Received:
March 12 2019
Accepted:
April 10 2019
Citation
Zulmarie Perez Horta, Cullen M. Case, Andrea L. DiCarlo; Use of Growth Factors and Cytokines to Treat Injuries Resulting from a Radiation Public Health Emergency. Radiat Res 1 July 2019; 192 (1): 92–97. doi: https://doi.org/10.1667/RR15383.1
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Radiofrequency Fields and Calcium Movements Into and Out of Cells
Andrew Wood, Ken Karipidis
Studies of the Mortality of Atomic Bomb Survivors, Report 14, 1950–2003: An Overview of Cancer and Noncancer Diseases
Kotaro Ozasa, Yukiko Shimizu, Akihiko Suyama, Fumiyoshi Kasagi, Midori Soda, Eric J. Grant, Ritsu Sakata, Hiromi Sugiyama, Kazunori Kodama
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner
Hypoxanthine Reduces Radiation Damage in Vascular Endothelial Cells and Mouse Skin by Enhancing ATP Production via the Salvage Pathway
Megumi Fujiwara, Nana Sato, Ken Okamoto