p53BP1 forms discrete foci within minutes of radiation exposure, at sites of DNA double-strand breaks, which ordinarily decay to background levels within 24 h of induction. Longer lived, persisting 53BP1 foci are thought to mark unrepaired or misrepaired damage and potentially, to be associated with genomic instability. It is known that repair of DNA damage is impaired in senescent (permanently arrested) and aged cells. We examined this further by measuring the induction and persistence of 53BP1 foci in proliferating and non-proliferating mid-passage (non-aged) and late-passage (in vitro aged) normal human bronchial epithelial cells. Our results showed background levels of 53BP1 foci to be elevated in in vitro aged cultures as expected and induction of 53BP1 foci after radiation exposure to be independent of culture age or proliferative status. In terms of 53BP1 decay, more cells with persisting foci were seen in in vitro aged cultures compared to non-aged populations; furthermore, this was observed in both non-cycling (nominally senescent) cells, as well as in actively proliferating cells. In conclusion, perturbation in radiation-induced damage processing is a function of increasing chronological cellular age per se and should be considered when extrapolating experimental data for radiation risk modeling.
Skip Nav Destination
Close
Article navigation
1 August 2019
Research Article|
September 25 2019
DNA Damage Processing is Perturbed in Both Proliferative and Non-Proliferative Cells of Increased Chronological Cellular Age
Rebecca Sabin
;
Rebecca Sabin
Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
Search for other works by this author on:
Gaia Pucci
;
Gaia Pucci
Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
Search for other works by this author on:
Rhona M. Anderson
Rhona M. Anderson
1
Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
1Address for correspondence: Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK; email: rhona.anderson@brunel.ac.uk.
Search for other works by this author on:
Radiat Res (2019) 192 (2): 200–207.
Article history
Received:
January 24 2019
Accepted:
May 15 2019
Citation
Rebecca Sabin, Gaia Pucci, Rhona M. Anderson; DNA Damage Processing is Perturbed in Both Proliferative and Non-Proliferative Cells of Increased Chronological Cellular Age. Radiat Res 1 August 2019; 192 (2): 200–207. doi: https://doi.org/10.1667/RR15348.1
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your Institution
2
Views
0
Citations
Citing articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner
Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group
Hualin Zhang, Xiaodong Wu, Xin Zhang, Sha X. Chang, Ali Megooni, Eric D. Donnelly, Mansoor M. Ahmed, Robert J. Griffin, James S. Welsh, Charles B. Simone, II, Nina A. Mayr