In the event of a radiological or nuclear attack, advanced clinical countermeasures are needed for screening and medical management of the exposed population. Such a population will represent diverse heterogeneity in physiological response to radiation exposure. The current study seeks to compare the expression levels of five previously established proteomic biodosimetry biomarkers of radiation exposure, i.e., Flt3 ligand (FL), matrix metalloproteinase 9 (MMP9), serum amyloid A (SAA), pentraxin 3 (PTX3) and fibrinogen (FGB), across multiple murine strains and to test a multivariate dose prediction model based on a single C57BL6 strain against other murine strains. Female mice from five different murine strains (C57BL6, BALB/c, C3H/HeJ, CD2F1 and outbred CD-1 mice) received a single whole-body dose of 1–8 Gy from a Pantak X-ray source at a dose rate of 3.59 Gy/min. Plasma was collected by cardiac puncture at days 1, 2, 3 and 7 postirradiation. Plasma protein levels were determined via commercially available ELISA assay. Significant differences were found between radiation-induced expression levels of FL, MMP9, SAA, PTX3 and FGB among the C57BL6, BALB/c, C3H/HeJ, CD2F1 and CD-1 strains (P < 0.05). The overall trends of dose-dependent biomarker elevation, however, were similar between strains, with FL and PTX3 showing the highest degree of correlation. Application of a previous C57BL6 multivariate dose prediction model using additional murine strains showed the limitations of a model based on a single strain and the need for data normalization for variance generated by technical assay variables. Our findings indicate that strain specific differences do exist between expression levels of FL, MMP9, SAA, PTX3 and FGB in C57BL6, BALB/c, C3H/HeJ, CD2F1 and CD-1 murine strains and that use of multiple biomarkers for dose prediction strengthens the predictive accuracy of a model when challenged with a heterogeneous population.
Skip Nav Destination
Close
Article navigation
1 December 2019
Research Article|
October 16 2019
Comparison of Proteomic Biodosimetry Biomarkers Across Five Different Murine Strains
Mary Sproull
;
Mary Sproull
Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
Search for other works by this author on:
Uma Shankavaram
;
Uma Shankavaram
Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
Search for other works by this author on:
Kevin Camphausen
Kevin Camphausen
1
Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
1 Address for correspondence: Radiation Oncology Branch, National Cancer Institute, 10 Center Drive 3B42, Bethesda, MD; email: camphauk@mail.nih.gov.
Search for other works by this author on:
Radiat Res (2019) 192 (6): 640–648.
Article history
Received:
May 23 2019
Accepted:
September 25 2019
Citation
Mary Sproull, Uma Shankavaram, Kevin Camphausen; Comparison of Proteomic Biodosimetry Biomarkers Across Five Different Murine Strains. Radiat Res 1 December 2019; 192 (6): 640–648. doi: https://doi.org/10.1667/RR15442.1
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner