To better study biological effects of space radiation using ground-based facilities, the NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory has been upgraded to rapidly switch ions and energies. This has allowed investigators to design irradiation protocols comprising a mixture of ions and energies more indicative of the galactic cosmic ray (GCR) environment. Despite these advancements, beam selection and delivery schemes should be optimized against facility and experimental constraints and validated to ensure such irradiations are a suitable representation of the space environment. Importantly, since experiments are time consuming and expensive, models capable of predicting biological outcomes over a range of irradiation conditions (single ion, sequential multi ion or mixed fields) are needed to support such efforts. In this work, human fibroblasts were placed behind 20 g/cm2 aluminum and 10.345 g/cm2 polyethylene and irradiated separately by 344 MeV hydrogen, 344 MeV/n helium, 450 MeV/n oxygen and 950 MeV/n iron ions at various doses. The fluorescence in situ hybridization (FISH) whole chromosome painting technique was then used to assess the cells for chromosome aberrations (CAs), notably simple exchanges. A multi-scale modeling approach was also developed to predict the formation of chromosome aberrations in these experiments. The Geant4 simulation toolkit was used to determine the spectra of particles and energies produced by interactions between the incident beams and shielding. The simulated mixed field generated by shielding was then transferred into the track structure code, RITRACKS (relativistic ion tracks), to generate three-dimensional (3D) voxelized dose maps at the nanometer scale. Finally, these voxel dose maps were input into the new damage and repair model, RITCARD (radiation-induced tracks, chromosome aberrations, repair and damage), to predict the formation of various CAs. The multi-scale model described herein is a significant advancement for the computational tools used to predict biological outcomes in cells exposed to highly complex, mixed ion fields related to the GCR environment. Results show that the simulation and experimental data are in good agreement for the complex radiation fields generated by all ions incident on shielding for most data points. The differences between model predictions and measurements are discussed. Although improvements are needed, the model extends current capabilities for evaluating beam selection and delivery schemes at the NSRL ground-based GCR simulator and for informing NASA risk projection models in the future.
Skip Nav Destination
Close
Article navigation
September 2020
Research Article|
July 16 2020
Determination of Chromosome Aberrations in Human Fibroblasts Irradiated by Mixed Fields Generated with Shielding
Tony C. Slaba
;
Tony C. Slaba
1
a NASA Langley Research Center, Hampton, Virginia 23681
1 Address for correspondence: NASA Langley Research Center, Space Radiation, 2 West Reid St., MS 188E, Hampton, VA 23681; email: Tony.C.Slaba@nasa.gov.
Search for other works by this author on:
Artem Ponomarev
;
Artem Ponomarev
b KBR, Houston, Texas 77058
Search for other works by this author on:
Zarana S. Patel
;
Zarana S. Patel
b KBR, Houston, Texas 77058
Search for other works by this author on:
Megumi Hada
Megumi Hada
c Prairie View A&M University, Prairie View, Texas 77446
Search for other works by this author on:
Radiat Res (2020) 194 (3): 246–258.
Article history
Received:
February 20 2019
Accepted:
May 14 2020
Citation
Tony C. Slaba, Ianik Plante, Artem Ponomarev, Zarana S. Patel, Megumi Hada; Determination of Chromosome Aberrations in Human Fibroblasts Irradiated by Mixed Fields Generated with Shielding. Radiat Res 1 September 2020; 194 (3): 246–258. doi: https://doi.org/10.1667/RR15366.1
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your Institution
77
Views
0
Citations
Citing articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner