Clustered DNA damage (cluster) or a multiply damaged site, which is a region with two or more lesions within one or two helical turns, has a high mutagenic potential and causes cell death. We quantified fluorophore-labeled lesions and estimated their proximity through fluorescence anisotropy measurements depending on Förster resonance energy transfer (FRET) among the fluorophores close to each other. pUC19 plasmid DNA (2,686 base pairs) dissolved in water or 0.2 M Tris-HCl buffer at a concentration of 10 μg/μL was irradiated by several ionizing radiations with varying linear energy transfers (LET, 0.21890 keV/μm). Electrophilic carbonyls (aldehydes and ketones) at abasic sites (APs) produced in DNA were labeled with Alexa Fluor 488 fluorescent dyes with an O-amino functional group. Regardless of the presence or absence of the buffer, AP yields (the number of APs/base pair/Gy) tended to decrease with increasing LET, and the ratio of the AP yield (in 0.2 M Tris-HCl/in water) was less than 0.1 in the LET range of 0.2–200 keV/μm. However, in a higher LET range, the ratios were greater than 0.1. At a low dose, fluorescence anisotropy decreased with increasing LET in 0.2 M Tris-HCl, whereas, in water, this LET dependence was almost insignificant. These findings suggest that 1. the damage distribution on a DNA molecule formed by indirect effects (e.g., by hydroxyl radicals) does not depend on radiation quality and 2. greater LET radiation is more likely to produce a cluster and/or to produce a cluster with shorter distances between lesions by direct effects. This FRET-based proximity estimation of DNA lesions will contribute not only to the identification of clusters and their complexity in a whole genome, but also to the study of their repair mechanism by single-molecular level fluorescence microscopy.

You do not currently have access to this content.