In pulse radiolysis of silver salts in liquid ammonia at 23°C, the reaction of <tex-math>$e_{{\rm am}}{}^{-}$</tex-math> with Ag^{+} produces Ag, and subsequently the reaction of Ag with Ag^{+} produces <tex-math>${\rm Ag}_{2}{}^{+}$</tex-math> which probably disproportionates to <tex-math>${\rm Ag}_{2}$</tex-math>. The maxima in absorption spectra at 435, 390, and 300 nm are ascribed to Ag, <tex-math>${\rm Ag}_{2}{}^{+}$</tex-math>, and <tex-math>${\rm Ag}_{2}$</tex-math>, respectively. The measured specific rate of the reaction of <tex-math>$e_{{\rm am}}{}^{-}$</tex-math> with Ag^{+} is <tex-math>$1.5\ \times 10^{12}\ M^{-1}\ {\rm sec}^{-1}$</tex-math> at 23°C. The calculated specific rate with the Smoluchowski-Debye equation for a diffusion-controlled reaction of <tex-math>$e_{{\rm am}}{}^{-}$</tex-math> with Ag^{+} is <tex-math>$1.4\ \times 10^{12}\ M^{-1}\ {\rm sec}^{-1}$</tex-math> at 25°C. The specific rate for the reaction of Ag with Ag^{+} is <tex-math>$1.3\times 10^{10}\ M^{-1}\ {\rm sec}^{-1}$</tex-math> at 23°C. At the same temperature, the ratio of the specific rate for the disporportionation of <tex-math>${\rm Ag}_{2}{}^{+}$</tex-math> and extinction coefficient of <tex-math>${\rm Ag}_{2}{}^{+}$</tex-math> at the 390 nm is <tex-math>$10^{6}\ {\rm cm}\ {\rm sec}^{-1}$</tex-math>. A comparison of the spectra of various silver species dissolved in water with the spectra for same species dissolved in liquid ammonia shows that spectra in liquid ammonia are shifted toward longer wavelengths.

Skip Nav Destination

Article navigation

1 October 1976

Research Article|
October 01 1976

# Nanosecond Pulse Radiolysis of Ammoniacal Solutions of Silver Salts

*Radiat Res*(1976) 68 (1): 23–30.

Citation

Farhataziz, Pierre Cordier, Lewis M. Perkey; Nanosecond Pulse Radiolysis of Ammoniacal Solutions of Silver Salts. * Radiat Res* 1 October 1976; 68 (1): 23–30. doi: https://doi.org/10.2307/3574531

Download citation file:

## Sign in

Don't already have an account? Register

### Client Account

You could not be signed in. Please check your email address / username and password and try again.

### Sign in via your Institution

Sign in via your Institution### Citing articles via

Commonalities Between COVID-19 and Radiation Injury

Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo

Monte Carlo Simulation of SARS-CoV-2 Radiation-Induced Inactivation for Vaccine Development

Ziad Francis, Sebastien Incerti, Sara A. Zein, Nathanael Lampe, Carlos A. Guzman, Marco Durante

Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?

Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held

Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light

Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner

RITCARD: Radiation-Induced Tracks, Chromosome Aberrations, Repair and Damage

Ianik Plante, Artem Ponomarev, Zarana Patel, Tony Slaba, Megumi Hada