Radiation models, such as whole thorax lung irradiation (WTLI) or partial-body irradiation (PBI) with bone-marrow sparing, have shown that affected lung tissue displays a continual progression of injury, often for months after the initial insult. Undoubtably, a variety of resident and infiltrating cell types either contribute to or fail to resolve this type of progressive injury, which in lung tissue, often develops into lethal and irreversible radiation-induced pulmonary fibrosis (RIPF), indicating a failure of the lung to return to a homeostatic state. Resident pulmonary epithelium, which are present at the time of irradiation and persist long after the initial insult, play a key role in the maintenance of homeostatic conditions in the lung and have often been described as contributing to the progression of radiation-induced lung injury (RILI). In this study, we took an unbiased approach through RNA sequencing to determine the in vivo response of the lung epithelium in the progression of RIPF. In our methodology, we isolated CD326+ epithelium from the lungs of 12.5 Gy WTLI C57BL/6J female mice (aged 8–10 weeks and sacrificed at regular intervals) and compared irradiated and non-irradiated CD326+ cells and whole lung tissue. We subsequently verified our findings by qPCR and immunohistochemistry. Transcripts associated with epithelial regulation of immune responses and fibroblast activation were significantly reduced in irradiated animals at 4 weeks postirradiation. Additionally, alveolar type-2 epithelial cells (AEC2) appeared to be significantly reduced in number at 4 weeks and thereafter based on the diminished expression of pro-surfactant protein C (pro-SPC). This change is associated with a reduction of Cd200 and cyclooxygenase 2 (COX2), which are expressed within the CD326 populations of cells and function to suppress macrophage and fibroblast activation under steady-state conditions, respectively. These data indicate that either preventing epithelial cell loss that occurs after irradiation or replacing important mediators of immune and fibroblast activity produced by the epithelium are potentially important strategies for preventing or treating this unique injury.
Skip Nav Destination
Article navigation
Research Article|
March 15 2023
Epithelial Responses in Radiation-Induced Lung Injury (RILI) Allow Chronic Inflammation and Fibrogenesis
Tyler A. Beach;
Tyler A. Beach
aSRI Biosciences, SRI International, Menlo Park, Calfornia 94025-3493
Search for other works by this author on:
Jacob N. Finkelstein;
Jacob N. Finkelstein
bUniversity of Rochester Medical Center, Departments of Pediatrics and Neonatology, and Environmental Medicine, Rochester, New York 14642
Search for other works by this author on:
Polly Y. Chang
Polly Y. Chang
1
aSRI Biosciences, SRI International, Menlo Park, Calfornia 94025-3493
1Corresponding author address: SRI Biosciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025-3493; email: polly.chang@sri.com.
Search for other works by this author on:
Radiat Res (2023)
Article history
Received:
June 20 2022
Accepted:
February 20 2023
Citation
Tyler A. Beach, Jacob N. Finkelstein, Polly Y. Chang; Epithelial Responses in Radiation-Induced Lung Injury (RILI) Allow Chronic Inflammation and Fibrogenesis. Radiat Res 2023; doi: https://doi.org/10.1667/RADE-22-00130.1
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your Institution
29
Views
Citing articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Effects of Radiation on Blood Pressure and Body Weight in the Spontaneously Hypertensive Rat Model. Are Radiation Effects on Blood Pressure Affected by Genetic Background?
Norio Takahashi, Munechika Misumi, Yasuharu Niwa, Hideko Murakami, Waka Ohishi, Toshiya Inaba, Akiko Nagamachi, Satoshi Tanaka, Ignacia Braga Tanaka, III, Gen Suzuki
Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958–2009
Eric J. Grant, Alina Brenner, Hiromi Sugiyama, Ritsu Sakata, Atsuko Sadakane, Mai Utada, Elizabeth K. Cahoon, Caitlin M. Milder, Midori Soda, Harry M. Cullings, Dale L. Preston, Kiyohiko Mabuchi, Kotaro Ozasa
Studies of the Mortality of Atomic Bomb Survivors, Report 14, 1950–2003: An Overview of Cancer and Noncancer Diseases
Kotaro Ozasa, Yukiko Shimizu, Akihiko Suyama, Fumiyoshi Kasagi, Midori Soda, Eric J. Grant, Ritsu Sakata, Hiromi Sugiyama, Kazunori Kodama
Radiofrequency Fields and Calcium Movements Into and Out of Cells
Andrew Wood, Ken Karipidis