Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-11 of 11
Bradford D. Loucas
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Radiation Research
Radiation Research (2018) 191 (1): 1–19.
Published: 06 November 2018
Abstract
Most of the important biological effects associated with the exposure to ionizing radiations are mirrored at the chromosomal level. In all cases, changes in the levels of cytogenetic effects are associated with changes in absorbed dose, dose rate and radiation quality. Some of the complexities associated with the quantitative description of such changes in response can be circumvented by appealing to concepts embodied in what has been called the “mean inactivation dose”. Additional metrics designed to provide LET-dependent “signatures” of damage have been employed with moderate degrees of success. These, along with some alternative approaches, are discussed in an effort to stimulate discussion, and to further work leading to a better understanding of mechanisms involved in the production and significance of chromosome aberrations after exposure to ionizing radiations.
Journal Articles
Journal:
Radiation Research
Radiation Research (2018) 190 (1): 88–97.
Published: 11 May 2018
Abstract
Chromosome rearrangements are large-scale structural variants that are recognized drivers of oncogenic events in cancers of all types. Cytogenetics allows for their rapid, genome-wide detection, but does not provide gene-level resolution. Massively parallel sequencing (MPS) promises DNA sequence-level characterization of the specific breakpoints involved, but is strongly influenced by bioinformatics filters that affect detection efficiency. We sought to characterize the breakpoint junctions of chromosomal translocations and inversions in the clonal derivatives of human cells exposed to ionizing radiation. Here, we describe the first successful use of DNA paired-end analysis to locate and sequence across the breakpoint junctions of a radiation-induced reciprocal translocation. The analyses employed, with varying degrees of success, several well-known bioinformatics algorithms, a task made difficult by the involvement of repetitive DNA sequences. As for underlying mechanisms, the results of Sanger sequencing suggested that the translocation in question was likely formed via microhomology-mediated non-homologous end joining (mmNHEJ). To our knowledge, this represents the first use of MPS to characterize the breakpoint junctions of a radiation-induced chromosomal translocation in human cells. Curiously, these same approaches were unsuccessful when applied to the analysis of inversions previously identified by directional genomic hybridization (dGH). We conclude that molecular cytogenetics continues to provide critical guidance for structural variant discovery, validation and in “tuning” analysis filters to enable robust breakpoint identification at the base pair level.
Includes: Supplementary data
Journal Articles
Journal:
Radiation Research
Radiation Research (2017) 187 (1): 7–19.
Published: 13 January 2017
Abstract
The concept of curvature in dose-response relationships figures prominently in radiation biology, encompassing a wide range of interests including radiation protection, radiotherapy and fundamental models of radiation action. In this context, the ability to detect even small amounts of curvature becomes important. Standard (ST) statistical approaches used for this purpose typically involve least-squares regression, followed by a test on sums of squares. Because we have found that these methods are not particularly robust, we investigated an alternative information theoretic (IT) approach, which involves Poisson regression followed by information-theoretic model selection. Our first objective was to compare the performances of the ST and IT methods by using them to analyze mFISH data on gamma-ray-induced simple interchanges in human lymphocytes, and on Monte Carlo simulated data. Real and simulated data sets that contained small-to-moderate curvature were deliberately selected for this exercise. The IT method tended to detect curvature with higher confidence than the ST method. The finding of curvature in the dose response for true simple interchanges is discussed in the context of fundamental models of radiation action. Our second objective was to optimize the design of experiments aimed specifically at detecting curvature. We used Monte Carlo simulation to investigate the following parameters. Constrained by available resources (i.e., the total number of cells to be scored) these include: the optimal number of dose points to use; the best way to apportion the total number of cells among these dose points; and the spacing of dose intervals. Counterintuitively, our simulation results suggest that 4–5 radiation doses were typically optimal, whereas adding more dose points may actually prove detrimental. Superior results were also obtained by implementing unequal dose spacing and unequal distributions in the number of cells scored at each dose.
Journal Articles
Journal:
Radiation Research
Radiation Research (2013) 179 (4): 393–405.
Published: 06 February 2013
Abstract
Cytogenetic damage is among the few radiobiological end points that allow a precise distinction to be made between misrepaired damage, represented by exchange-type aberrations such as dicentrics and translocations, and unrepaired damage that leads to “open breaks”. This latter category includes both terminal deletions and incomplete exchanges, whose different mechanisms of formation can be recognized by multicolor fluorescence in situ hybridization (mFISH). mFISH was used to examine the yields of chromosome aberrations at the first postirradiation mitosis in human fibroblasts and lymphocytes irradiated with 137 Cs γ rays, a radiation of low-linear energy transfer (LET), and two sources of high-LET radiation: α particles from 238 Pu and 1 GeV/amu 56 Fe ions. In agreement with previous studies, our results show that irrespective of radiation quality, the overall level of misrepaired damage exceeds that of unrepaired damage by a large margin. The unrepaired component of damage produced by γ rays and α particles was remarkably similar, about 5%. On that basis it is difficult to justify the popular notion that the strong LET-dependence for aberration formation is due to unrepaired DNA double-strand breaks (DSBs) that, by virtue of their complexity at the nanometer scale, are qualitatively different in nature. In marked contrast, this unrejoined component rose to about 14% after exposure to Fe ions. A closer look at the unrepaired component revealed that most of this roughly threefold difference was derived from incomplete exchanges. Despite vast differences in LET, unrejoined breaks from incomplete exchanges were far more likely to occur among exchanges that involved more than two breakpoints. We attempted to reconcile these observations in the form of a hypothesis that predicts that exchanges, irrespective of LET, should exhibit an increasing tendency for incompleteness as the number of initial breaks destined to take part in the exchange increases. This effect, we argue is not caused by the number of initial breaks per se , but instead reflects the maximum distance over which proximate breaks can interact. This adds a spatial aspect to multi-break interactions that we call “A Break Too Far”.
Journal Articles
Journal:
Radiation Research
Radiation Research (2012) 179 (1): 9–20.
Published: 30 November 2012
Abstract
We irradiated normal human lymphocytes and fibroblasts with 137 Cs γ rays, 3.5 MeV α particles and 1 GeV/amu 56 Fe ions and measured the subsequent formation of chromosome-type aberrations by mFISH at the first mitosis following irradiation. This was done for the purposes of characterizing the shape of dose-response relationships and determining the frequency distribution of various aberration types with respect to the parameters of dose, radiation quality and cell type. Salient results and conclusions include the following. For low-LET γ rays, lymphocytes showed a more robust dose response for overall damage and a higher degree of upward curvature compared to fibroblasts. For both sources of high-LET radiation, and for both cell types, the response for simple and complex exchanges was linear with dose. Independent of all three parameters considered, the most likely damage outcome was the formation of a simple exchange event involving two breaks. However, in terms of the breakpoints making up exchange events, the majority of damage registered following HZE particle irradiation was due to complex aberrations involving multiple chromosomes. This adds a decidedly nonlinear component to the overall breakpoint response, giving it a significant degree of positive curvature, which we interpret as being due to interaction between ionizations of the primary HZE particle track and long-range δ rays produced by other nearby tracks. While such track interaction had been previously theorized, to the best of our knowledge, it has never been demonstrated experimentally.
Includes: Supplementary data
Journal Articles
Journal:
Radiation Research
Radiation Research (2004) 162 (5): 554–565.
Published: 01 November 2004
Abstract
Loucas, B. D. and Cornforth, M. N. Evidence that Unrejoined DNA Double-Strand Breaks are not Predominantly Responsible for Chromosomal Radiosensitivity of AT Fibroblasts. Radiat. Res. 162, 554–565 (2004). To examine more fully the nature of chromosomal radiosensitivity in ataxia telangiectasia (AT) cells, we employed 24-color combinatorial painting to visualize 137 Cs γ-ray-induced chromosome-type aberrations in cells of two AT and one normal primary human fibroblast strains irradiated in log-phase growth. As a measure of misrejoined radiation-induced DSBs, we quantified exchange breakpoints associated with both simple and complex exchanges. As a measure of unrejoined DSBs, we quantified breakpoints from terminal deletions as well as deletions associated with incomplete exchange. For each of these end points, the frequency of damage per unit dose was markedly higher in AT cells compared to normal cells, although the proportion of total breaks that remained unrejoined was rather similar. The majority of breakpoints in both cell types were involved in exchanges. AT cells had a much higher frequency of complex exchanges compared to normal cells given the same dose, but for doses that resulted in approximately the same level of total breakpoints, the relative contribution from complex damage was also similar. We conclude that although terminal deletions and incomplete exchanges contribute to AT cell radiosensitivity, their relative abundance does not—in apparent contrast to the situation in lymphoblastoid cells—overwhelmingly account for the increased damage we observed in cycling AT fibroblasts. Thus, from a cytogenetic perspective, a higher level of unrepaired DSBs does not provide a universal explanation for the radiation-sensitive AT phenotype.
Journal Articles
Journal:
Radiation Research
Radiation Research (2004) 162 (4): 339–349.
Published: 01 October 2004
Abstract
Loucas, B. D, Eberle, R., Bailey, S. M. and Cornforth, M. N. Influence of Dose Rate on the Induction of Simple and Complex Chromosome Exchanges by Gamma Rays. Radiat. Res. 162, 339–349 (2004). Single-color painting of whole chromosomes, or protocols in which only a few chromosomes are distinctively painted, will always fail to detect a proportion of complex exchanges because they frequently produce pseudosimple painting patterns that are indistinguishable from those produced by bona fide simple exchanges. When 24-color multi-fluor FISH (mFISH) was employed for the purpose of distinguishing (truly) simple from pseudosimple exchanges, it was confirmed that the acute low-LET radiation dose–response relationship for simple exchanges lacked significant upward curvature. This result has been interpreted to indicate that the formation of simple exchanges requires only one chromosome locus be damaged (e.g. broken) by radiation to initiate an exchange—not two, as classical cytogenetic theory maintains. Because a one-lesion mechanism implies single-track action, it follows that the production of simple exchanges should not be influenced by changes in dose rate. To examine this prediction, we irradiated noncycling primary human fibroblasts with graded doses of 137 Cs γ rays at an acute dose rate of 1.10 Gy/min and compared, using mFISH, the yield of simple exchanges to that observed after exposure to the same radiation delivered at a chronic dose rate of 0.08 cGy/min. The shape of the dose response was found to be quasi-linear for both dose rates, but, counter to providing support for a one-lesion mechanism, the yield of simple aberrations was greatly reduced by protracted exposure. Although chronic doses were delivered at rates low enough to produce damage exclusively by single-track action, this did not altogether eliminate the formation of complex aberrations, an analysis of which leads to the conclusion that a single track of low-LET radiation is capable of inducing complex exchanges requiring up to four proximate breaks for their formation. For acute exposures, the ratio of simple reciprocal translocations to simple dicentrics was near unity.
Journal Articles
Journal:
Radiation Research
Radiation Research (2001) 155 (5): 660–671.
Published: 01 May 2001
Abstract
Loucas, B. D. and Cornforth, M. N. Complex Chromosome Exchanges Induced by Gamma Rays in Human Lymphocytes: An mFISH Study. Radiat. Res. 155, 660–671 (2001). Combinatorial multi-fluor fluorescence in situ hybridization (mFISH) allows the simultaneous painting of each pair of homologous chromosomes, thereby eliminating many of the difficulties previously associated with the analysis of complex rearrangements. We employed mFISH to visualize exchanges in human lymphocytes and found significant frequencies of these aberrations after γ-ray doses of 2 and 4 Gy. At 4 Gy, roughly half of the cells contained at least one complex exchange that required anywhere from 3 to 11 initial chromosome breaks. At this dose, more than 40% of gross cytogenetic damage, as measured by the total number of exchange breakpoints, was complex in origin. Both simple and complex exchanges were found to have nonlinear dose responses, although the latter showed significantly more upward curvature. In many cases, it could be deduced that the initial breaks leading to a particular complex exchange were proximate , meaning that the resulting broken chromosome ends all must have been capable of interacting freely during the exchange process. For other complex exchanges, the rearrangement could just as well have resulted from two or more simpler exchanges that occurred sequentially. The results demonstrate the utility of mFISH in visualizing intricacies of the exchange process, but also highlight the various sources of ambiguity concerning cytogenetic analysis that remain despite the power of this approach.
Journal Articles
Journal:
Radiation Research
Radiation Research (1998) 149 (2): 171–178.
Published: 01 February 1998
Abstract
The latent effects of radiation-induced damage include "delayed" mutations that arise do novo in the progeny of nonmutant cells. We investigated the early stages of delayed mutagenesis at the HPRT locus of EJ30 human epithelial cells that were exposed to 4 Gy of 137 Cs γ rays. To eliminate directly induced "prompt" <tex-math>$HPRT$</tex-math> mutants, cultures were grown in HAT medium before selection in 6-thioguanine was applied. Although irradiated cells were grown in HAT medium throughout the phenotypic expression period, mutant fractions some tenfold above spontaneous levels were observed subsequently; incubation in HAT medium did not cause an increase in mutations in unirradiated cells. We conclude that, in our experimental system, a significant proportion of induced mutation is of a delayed type. We speculate that the delayed induction is caused by an instability process that is a frequent and (typically) transient consequence of exposure of cells to ionizing radiation. The connection, if any, between this process and other manifestations of instability, including the acquisition of a "mutator phenotype," remains to be established.
Journal Articles
Journal:
Radiation Research
Radiation Research (1994) 139 (1): 9–14.
Published: 01 July 1994
Abstract
To determine the efficiency at which α particles at LETs chosen to simulate exposure to radon progeny break chromosomes, the premature chromosome condensation technique was used to measure breaks soon after irradiation. Noncycling human fibroblasts were irradiated with graded doses of monoenergetic α particles accelerated to produce LETs of 90, 120, 150, 180 and 200 keV/μm at the midpoint of the cell nuclei. Premature chromosome condensation was initiated immediately after irradiation and cells were scored for the total number of prematurely condensed chromosomes and fragments per cell. Similar experiments were conducted with 250 kVp X rays for comparison. Irradiation with α particles produced 8.6 to 13.1 excess fragments per gray, while X rays produced 5.8 excess fragments, resulting in RBEs around 2. Calculations of the number of breaks produced on average by a single particle traversal of a cell nucleus indicated that at the LETs tested more than one break (1.5-2.8) was produced by each traversal, the maximum being that produced by 180 keV/μm α particles. When chromosome aberrations are scored at metaphase after high-LET irradiation, RBEs considerably greater than those recorded here (∼2) have been reported. These results showing relatively small differences in initial break levels for α particles in the LET range of the radon progeny relative to X rays indicate that the greater aberration frequencies are not due principally to an increase in breakage efficiency, but interactions between breaks along the same particle track are important.
Journal Articles
Journal:
Radiation Research
Radiation Research (1994) 138 (3): 352–360.
Published: 01 June 1994
Abstract
To determine whether chromosome breaks produced by α particles are processed differently from those produced by X rays, the premature chromosome condensation technique was used to follow chromosome rejoining after irradiation. Doses of 90 and 200 keV/μm α particles (2.7 Gy) and 250 kVp X rays (6 Gy) were chosen to produce approximately the same number of initial chromosome breaks (about 30 excess fragments per cell). Frequencies of excess fragments were assessed at eight times to 24 h after irradiation with the final yields being about 2, 4 and 8 excess fragments per cell for 250 kVp X rays and 200 and 90 keV/μm α particles, respectively. For each radiation the time for the initial measured fragment frequency per cell to be halved (i.e. to about 15) was the same (about 100 min). The results were fitted to three models of kinetics of the rejoining, and the initial and residual number of excess chromosome fragments as well as the rate of rejoining were determined. Even with eight times, discrimination between the models of the kinetics was not possible, such that a single-component first-order reaction could not be rejected for either X-ray- or α-particle-induced breaks. Although rejoining proceeds at similar rates, the probability of "correct" rejoining is apparently reduced for α-particle-irradiated cells.