Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-7 of 7
K. Sankaranarayanan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal Articles
Journal:
Radiation Research
Radiation Research (2001) 156 (5): 648–656.
Published: 01 November 2001
Abstract
Sankaranarayanan, K. and Chakraborty, R. Impact of Cancer Predisposition and Radiosensitivity on the Population Risk of Radiation-Induced Cancers. Radiat. Res. 156, 648–656 (2001). This paper provides a brief overview of the current evidence for cancer predisposition and for an increased sensitivity of individuals carrying such predisposing mutations to cancers induced by ionizing radiations. We also discuss the use of a Mendelian one-locus, two-allele autosomal dominant model for predicting the impact of cancer predisposition and increased radiosensitivity on the risk of radiation-induced cancers in the population and in relatives of affected individuals using breast cancer due to BRCA1 mutations as an example. The main conclusions are the following: (1) The relative risk ratio of the risks of radiation-induced cancer in a heterogeneous population which has subgroups of normal and cancer-predisposed individuals to the risks in a homogeneous population (i.e., one which does not have these subgroups) increases with increasing dose; however, the dose dependence of the RR decreases at higher doses because of the fact that at high doses, the radiation risk to a homogeneous population will already be high. (2) The attributable risk (the proportion of cancers attributable to increased cancer susceptibility and increased radiosensitivity) follows a similar pattern. (3) When the proportion of cancers due to the susceptible genotypes is small (<10%), as is likely to be the case for breast cancers in non-Ashkenazi Jewish women, the increases in risk ratios and attributable risks are small, and become marked only when there are very large increases in cancer susceptibility (>1000-fold) and radiosensitivity (>100-fold) in the susceptible group. (4) When the proportion of cancers due to the susceptible genotypes is appreciable (≥10%), as may be the case for breast cancers in Ashkenazi Jewish women, there may be significant increases in the risk ratios and attributable risk for comparatively moderate increases in cancer susceptibility (>10-fold) and radiosensitivity (>100-fold) in the susceptible subpopulation. (5) The ratio of the risk of radiation-induced cancer in relatives to that in unrelated individuals in the population increases with the biological relatedness of the relative, being higher for close than for distant relatives; however, even when the mutant BRCA1 gene frequency and the proportion of breast cancers due to these mutations are high, as in Ashkenazi Jewish women, for values of predisposition strength and radiosensitivity differential <10, the increase in breast cancer risks is only marginal, even for first-degree relatives.
Journal Articles
Journal:
Radiation Research
Radiation Research (1999) 152 (4): 398–403.
Published: 01 October 1999
Abstract
The radioprotective effect of a stable prostaglandin E 1 analogue, misoprostol, was studied in cells from mice with severe combined immunodeficiency (SCID) and in normal cells using X-ray-induced chromosomal aberrations and/or cell killing as the end points. The results clearly show misoprostol-induced radioprotective effects in spermatocytes of the first meiotic division when analyzed for X-ray-induced chromosomal aberrations. The protective effect was independent of Trp53 (formerly known as p53) status. Since spermatocytes are relatively easy to isolate, this appears to be a suitable in vivo model that will allow biochemical studies of the mechanisms involved in radioprotection mediated by misoprostol. Using transfected CHO-K1 cells that stably express a PGE 2 receptor (CPE cells), significant radioprotection mediated by misoprostol from both chromosome breakage and cell death could be demonstrated under in vitro conditions. In addition, evidence was obtained indicating that the degree of radioprotection was dependent on the cell cycle and that S-phase cells were less responsive to misoprostol-mediated radioprotection. These results suggest that CPE cells may be a suitable in vitro model for further studies on the cellular pathways involved in radioprotection by misoprostol in particular and prostaglandins in general.
Journal Articles
Journal:
Radiation Research
Radiation Research (1998) 149 (5): 493–507.
Published: 01 May 1998
Abstract
Individuals carrying cancer-predisposing germline mutations are known to be at a higher risk for cancers than those who do not carry them. This is also true of their biological relatives because they have a higher probability of being carriers of such mutant genes than unrelated individuals in the population. Further, there are now sufficient grounds for assuming that cancer-predisposed individuals may also be at a higher risk for cancers induced by ionizing radiation. In our earlier work, we examined the impact of this heterogeneity (with respect to cancer predisposition and radiosensitivity differentials) on risks of radiation-induced cancer at the population level. This paper is focused on the question of risks of radiation-induced cancer in relatives of cancer-predisposed individuals. Using an autosomal dominant model of cancer predisposition and radiosensitivity developed earlier and applying it to breast cancer risks associated with mutations in the BRCA1 gene, we show that: (1) The risk ratio (i.e. the ratio of risk of radiation-induced cancer in relatives to that in unrelated individuals) in the population increases with the degree of biological relatedness of the relative, being higher for close than for distant relatives; incomplete penetrance of the mutant gene "dilutes" this risk ratio. (2) The proportion of excess radiation-induced cancers in relatives (i.e. the attributable fraction) is higher than in unrelated individuals. (3) In relatives, the proportion of excess cancers due to radiosensitivity differentials alone depends on the strength of predisposition, the radiosensitivity differentials assumed, the radiation dose, the proportion of cancers due to predisposition, the mutant gene frequency and the penetrance of the mutant gene. This is in contrast to the situation for unrelated individuals, for whom the above-mentioned proportion is dependent on the first three but not on the last three of these factors. Further, even when the proportion of excess cancers is small, most of it is due to radiosensitivity differential alone both in unrelated individuals and in relatives. (4) For values of predisposition strength and radiosensitivity differential <10, even when the estimated frequency of a mutant BRCA1 gene is 0.0047 and the proportion of breast cancers due to these mutations is 38% (as is the case for Ashkenazi Jewish women under age 30), the increase in breast cancer risks is only marginal even for first-degree relatives. (5) These findings support the conclusion that increases in radiation risks to relatives (compared to those in unrelated individuals), to be detectable epidemiologically, will occur only when the mutant alleles are common and the strength of predisposition and radiosensitivity differentials are conjointly dramatic.
Journal Articles
Journal:
Radiation Research
Radiation Research (1997) 147 (3): 309–320.
Published: 01 March 1997
Abstract
Recent studies have identified a number of genes in the human genome at which germinal mutations predispose the individuals to one or another type of cancer. These studies also show that not all individuals carrying the mutant genes develop cancers (i.e., the mutant genes are not fully penetrant). At least some of these predisposed genotypes also have a higher sensitivity to cancers induced by ionizing radiation than those who are not so predisposed, which may be dependent on dose. This paper presents an analysis of the impact of such heterogeneity on estimates of cancer risks for an irradiated population. This is done by extending the Mendelian one-locus, two-allele model of cancer predisposition and radiosensitivity developed earlier to allow for incomplete penetrance and dose dependence of radiosensitivity differentials among genotypes. The model is applied to recently published data for breast cancer and hereditary non-polyposis colon cancer using a range of possible values for the strength of predisposition and radiosensitivity differentials. It is shown that, after radiation exposures, the ratio of cancer risks in a heterogeneous population relative to that in a homogeneous population increases with increasing dose, but that the dose dependence of the relative risk diminishes at higher doses. Likewise, the attributable risk (i.e. the proportion of the increase in risk that is due to both increased susceptibility and increased radiosensitivity) and the proportion of attributable risk due to increased radiosensitivity also increase with dose, and the dose dependence of each measurement also diminishes at higher doses. However, when the proportion of cancers due to the susceptible genotypes is small (<10%) (as is likely to be the case for breast cancer in non-Ashkenazi women), the increases in the relative risk and attributable risk are marked only when there are very large increases in cancer susceptibility (>1000-fold) and radiosensitivity (>100-fold) in the susceptible group. When the proportion of cancers due to the susceptible genotypes is appreciable (≥10%) (as may be the case for breast cancer in Ashkenazi Jewish women), there may be large increases in the relative risk and attributable risk for comparatively modest increases in cancer susceptibility (>10-fold) and radiosensitivity (>100-fold) in the susceptible subpopulation. For any given combination of strength of predisposition and radiosensitivity differential, incomplete penetrance dilutes the effect.
Journal Articles
Journal:
Radiation Research
Radiation Research (1995) 143 (3): 293–301.
Published: 01 September 1995
Abstract
Individuals genetically predisposed to cancer may be more sensitive to cancers induced by ionizing radiation than those who are not so predisposed. Should this be true, under conditions of radiation exposure, a population consisting of cancer-predisposed and non-predisposed individuals will be expected to respond with a higher total frequency of induced cancers than one in which all the individuals are assumed to have the same sensitivity to radiation-induced cancers. To study this problem quantitatively, we have developed a Mendelian autosomal one-locus, two-allele model; this model assumes that one of the alleles is mutant and the genotypes carrying the mutant allele(s) are cancer-predisposed and are also more sensitive to radiation-induced cancer. Formal analytical predictions as well as numerical illustrations of this model show that: (1) when such heterogeneity with respect to cancer predisposition and radiosensitivity is present in the population, irradiation results in a greater increase in the frequency of induced cancers than when it is absent; (2) this increase is detectable only when the proportion of cancers due to genetic predisposition is large and when the degree of predisposition is considerable; and (3) even when the effect is small, most of the radiation-induced cancers will occur in predisposed individuals. These conclusions are valid for models of cancer when predisposition and radiosensitivity may be either dominant or recessive. The published data on breast cancers in Japanese A-bomb survivors show that at 1 Sv, the radiation-related excess relative risk in women irradiated before age 20 is 13 compared to about 2 for those irradiated at later ages. We examined the application of our model to the above data using two assumptions, namely, that the proportion of cancers due to genetic susceptibility at the BRCA1 locus (1/200) and the frequency of the mutant allele (0.0033) estimated for Western populations are valid for Japanese women. With our model, these results can be explained only if there are very large differences in cancer susceptibility (>1000-fold) and radiosensitivity (>100-fold) of the heterozygotes.
Journal Articles
Journal:
Radiation Research
Radiation Research (1995) 143 (2): 121–143.
Published: 01 August 1995
Abstract
This paper presents an overview of current knowledge on genetic predisposition to cancer and on enhanced sensitivity of cancer-predisposed genotypes to cancers induced by ionizing radiation. It is intended to provide a background and set the stage for the next papers in this series in which we will assess how such heterogeneity (with respect to predisposition to cancer and presence of radiosensitive genotypes) in a population may affect estimates of the risk of radiation-induced cancers. The main findings and/or conclusions of the present paper are the following: (1) "Cancer-predisposing genes" (i.e. those at which germinal mutations predispose to cancer) are present in the human genome; these genes are responsible not only for the rare familial cancer syndromes but also for a proportion of the common cancers. At least 21 such genes have now been cloned (including 9 tumor suppressor genes, 11 DNA repair genes and 1 proto-oncogene); further, at least 8 putative tumor suppressor genes and a gene involved in ataxia telangiectasia have been localized to specific chromosomes. (2) These genes play crucial roles in the control of cellular proliferation, programmed cell death (apoptosis) and/or one or another DNA repair pathway. Consequently, mutations in these genes are likely to "liberate" the cells from the normal constraints imposed by them, resulting in unconstrained growth characteristic of cancer. (3) At present, the evidence for increased sensitivity of cancer-predisposed genotypes to radiation-induced cancers is limited. However, current knowledge of the known functions of the cancer-predisposing genes and of the consequences of mutations in these provide (a) sufficient grounds for assuming that the genotypes of those predisposed to cancer may be at an increased risk for radiation-induced cancers and (b) the rationale for attempts to estimate quantitatively the impact of genotype-dependent differences in cancer predisposition and radiosensitivity on cancer risks in an irradiated population.