ABSTRACT

Carbon nanohorn (CNH)–filled elastomer hybrid nanocomposites were prepared based on NBR. Three different CNH types were analyzed, each featuring various characteristics such as aggregate structure, specific surface area, surface energy distribution, and electrical conductivity and resulting in different potentials regarding the properties of the developed elastomers. For the CNH types, a high tendency of agglomeration was observed in the pristine state, indicating the need for an effective strategy to break up the agglomerates during the mixing or the compounding procedure to realize their incorporation and sufficient dispersion in a polymer matrix. In addition to the melt mixing technology by means of an internal lab mixer, a discontinuous static and a continuous dynamic latex compounding process were used. Carbon nanotubes and a highly conductive carbon black (Printex) were used as hybrid fillers in the compounds mixed by melt mixing, whereas two different types of carbon black (Printex and Derussol) were also incorporated in the latex experiments. Hybrid nanocomposites with low content of CNHs (≤1 wt%) show an improvement in dynamic-mechanic and physical properties due to distinctive polymer–filler interactions. Dealing with higher amounts of CNHs leads to filler reagglomeration, resulting in deterioration of the elastomer properties. For the electric conductivity assessment, addition of CNH indicates no synergistic effects and no significant increase of the hybrid compounds, which is demonstrated in dielectric measurements, although pristine CNHs are conductive themselves. Elastomer compounds processed via the latex method show enhanced material performance by using the continuous dynamic latex compounding, which is mainly attributed to the dispersion of the hybrid filler.

You do not currently have access to this content.