The strain rate dependence of uncured rubber is investigated through a series of tensile tests (monotonic, multistep relaxation, cyclic creep tests) at different strain rates. In addition, loading/unloading tests in which the strain rate is varied every cycle are carried out to observe their dependence on the deformation history. A strain rate–dependent viscoelastic–viscoplastic constitutive model is proposed with the nonlinear viscosity and process-dependent recovery properties observed in the test results. Those properties are implemented by introducing evolution equations for additional internal variables. The identified material parameters capture the experiments qualitatively well. The proposed model is also evaluated by finite element simulations of the building process of a tire, followed by the in-molding.

This content is only available as a PDF.
You do not currently have access to this content.