Good dispersion of compounded ingredients in a rubber formulation is important for mechanical performance. After mixing, certain materials can remain undispersed within the rubber matrix, which could lead to critical flaws, influencing performance according to the Griffith failure criteria. High resolution X-ray computed tomography (XCT) offers a unique opportunity to measure phase domain size and distributions. Fillers such as carbon black or silica can be differentiated from sulfur or zinc oxide, providing an opportunity to determine dispersion characteristics of the various phases. The XCT technique has become an important characterization tool for three-dimensional and higher dimension material science due to the availability of polychromatic micro-focus x-ray sources and efficient high spatial resolution detectors with superior scintillators. High resolution XCT provides very rich data quantifying mixing efficiency of particulates in a matrix, such as insoluble sulfur or silica particles in rubber. Imaging with X-rays provides attenuation, phase, or scattering contrast and will prove to be a critical method for evaluating the field of rubber crosslinking, considering realistic environments in situ. This paper highlights methodology development and validation and provides insight on the dispersion of polymeric (insoluble) sulfur in rubber formulations. Dispersion assessment is compared using three techniques: high resolution XCT, population survival analysis in tensile testing, and optical microscopy.

This content is only available as a PDF.
You do not currently have access to this content.