Skip to Main Content
Skip Nav Destination

Elevations in atmospheric carbon dioxide (CO2) are anticipated to acidify oceans because of fundamental changes in ocean chemistry created by CO2 absorption from the atmosphere into the oceans in a process known as ocean acidification. Over the next century, elevated CO2 is expected to cause a reduction in the pH of the surface ocean from 8.1 to 7.7 units and a reduction in carbonate ion (CO32-) concentration required for calcifying marine organisms. Of growing concern is the potential impact that this change in ocean chemistry will have on marine and estuarine organisms and ecosystems, particularly molluscs and echinoderms which are broadcast spawners with larvae that develop in seawater. Although fertilisation in molluscs and echinoderms appears to be robust to the effects of elevated CO2, larval development is characterised by impacts on the rate of larval development through successive stages, larval survival and abnormality including the failure to produce shells and skeletons. Despite these trends, our current understanding of the biological consequences of an acidifying ocean over the next century is still dominated by large uncertainties. Some of the greatest gaps in our understanding is the synergistic impacts of elevated CO2 with other environmental stressors such as increasing ocean temperature and changing salinity. Until we have a better picture from laboratory and field based experiments which investigate multiple stressors in a chronic way over multiple generations, we will be limited in predicting which mollusc or echinoderm species will be able to acclimate or adapt.

Alvarado-Alvarez, R., Gould, M. C. and Stephano, J. L. 1996. Spawning, in vitro maturation, and changes in oocyte electrophysiology induced by serotonin in Tivela stultorum.Biological Bulletin 190(3): 322-328.
Anger, K. 1987. The DO threshold: a critical point in the larval development of decapod crustaceans. Journal of Experimental Marine Biology and Ecology 108(1): 15-30.
Anlauf, H., D'Croz, L. and O'Dea, A. 2011. A corrosive concoction: The combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative. Journal of Experimental Marine Biology and Ecology 397(1): 13-20.
Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. and Hoegh-Guldberg, O. 2008. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences of the United States of America 105(45): 17442-17446.
Arnold, K. E., Findlay, H. S., Spicer, J. I., Daniels, C. L. and Boothroyd, D. 2009. Effect of CO2-related acidification on aspects of the larval development of the European lobster, Homarus gammarus (L.). Biogeosciences 6(8): 1747-1754.
Beiras, R. and His, E. 1994. Effects of dissolved mercury on embryogenesis, survival, growth and metamorphosis of Crassostrea gigas oyster larvae. Marine Ecology Progress Series 113(1-2): 95-104.
Bibby, R., Widdicombe, S., Parry, H., Spicer, J. and Pipe, R. 2008. Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis.Aquatic Biology 2(1): 67-74.
Byrne, M. 2011. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanography and Marine Biology - An Annual Review 49: 1-42.
Byrne, M., Ho, M., Selvakumaraswamy, P., Nguyen, H. D., Dworjanyn, S. A. and Davis, A. R. 2009. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proceedings of the Royal Society B: Biological Sciences 276(1663): 1883-1888.
Byrne, M., Ho, M., Wong, E., Selvakumaraswamy, P., Sheppard Brennand, H., Dworjanyn, S. A. and Davis, A. R. 2011a. Unshelled abalone and corrupted urchins, development of marine calcifiers in a changing ocean. Proceedings of the Royal Society B: Biological Sciences 278(1716): 2376-2383.
Byrne, M., Selvakumaraswamy, P., Ho, M. A., Woolsey, E. and Nguyen, H. D. 2011b. Sea urchin development in a global change hotspot, potential for southerly migration of thermotolerant propagules. Deep-Sea Research Part II: Topical Studies in Oceanography 58(5): 712-719.
Byrne, M., Soars, N. A., Ho, M. A., Wong, E., McElroy, D., Selvakumaraswamy, P., Dworjanyn, S. A. and Davis, A. R. 2010a. Fertilization in a suite of coastal marine invertebrates from SE Australia is robust to near-future ocean warming and acidification. Marine Biology 157(9): 2061-2069.
Byrne, M., Soars, N.A., Selvakumaraswamy, P., Dworjanyn, S. A. and Davis, A. R. 2010b. Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Marine Environmental Research 69(4): 234-239.
Calabrese, A. and Davis, H. C. 1966. The pH tolerance of embryos and larvae of Mercenaria mercenaria and Crassostrea virginica.Biological Bulletin 131(3): pp. 427-436.
Caldeira, K. and Wickett, M. 2005. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research C: Oceans 110(9): 1-12.
Caldeira, K. and Wickett, M. E. 2003. Anthropogenic carbon and ocean pH. Nature 425(6956): 365.
Cigliano, M., Gambi, M. C., Rodolfo-Metalpa, R., Patti, F. P. and Hall-Spencer, J. M. 2010. Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Marine Biology 157(11): 2489-2502.
Cipollaro, M., Corsale, G. and Esposito, A. 1986. Sublethal pH decrease may cause genetic damage to eukaryotic cell: A study on sea urchins and Salmonella typhimurium.Teratogenesis Carcinogenesis and Mutagenesis 6(4): 275-287.
Clark, D., Lamare, M. and Barker, M. 2009. Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: A comparison among a tropical, temperate, and a polar species. Marine Biology 156(6): 1125-1137.
Comeau, S., Gorsky, G., Alliouane, S. and Gattuso, J. P. 2010. Larvae of the pteropod Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-less. Marine Biology 157(10): 2341-2345.
Connell, J. H. 1975. Some mechanisms producing structure in natural communities: a model and evidence from field experiments Pp. 460-490 in Ecology and Evolution of Communities, edited by M. Cody and J. Diamond. Harvard University Press, Cambridge, MA, USA.
Crim, R. N., Sunday, J. M. and Harley, C. D. G. 2011. Elevated seawater CO2 concentrations impair larval development and reduce larval survival in endangered northern abalone ( Haliotis kamtschatkana). Journal of Experimental Marine Biology and Ecology 400(1-2): 272-277.
Desrosiers, R. R., Désilets, J. and Dubé, F. 1996. Early developmental events following fertilization in the giant scallop Placopecten magellanicus.Canadian Journal of Fisheries and Aquatic Sciences 53(6): 1382-1392.
Doney, S. C., Fabry, V. J., Feely, R. A. and Kleypas, J. A. 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1(1): 169-192.
Dupont, S., Dorey, N. and Thorndyke, M. 2010a. What metaanalysis can tell us about vulnerability of marine biodiversity to ocean acidification? Estuarine, Coastal and Shelf Science 89(2): 182-185.
Dupont, S., Havenhand, J., Thorndyke, W., Peck, L. and Thorndyke, M. 2008. Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis.Marine Ecology Progress Series 373: 285-294.
Dupont, S., Lundve, B. and Thorndyke, M. 2010b. Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus.Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 314 B(5): 382-389.
Dupont, S., Ortega-Martínez, O. and Thorndyke, M. 2010c. Impact of near-future ocean acidification on echinoderms. Ecotoxicology 19(3): 449-462.
Dupont, S. and Thorndyke, M. C. 2009. Impact of CO2-driven ocean acidification on invertebrates early life-history - What we know, what we need to know and what we can do. Biogeosciences Discussions 6(2): 3109-3131.
Egilsdottir, H., Spicer, J. I. and Rundle, S. D. 2009. The effect of CO2 acidified sea water and reduced salinity on aspects of the embryonic development of the amphipod Echinogammarus marinus (Leach). Marine Pollution Bulletin 58(8): 1187-1191.
Ellis, R. P., Bersey, J., Rundle, S. D., Hall-Spencer, J. M. and Spicer, J. I. 2009. Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, Littorina obtusata.Aquatic Biology 5(1): 41-48.
Ericson, J. A., Lamare, M. D., Morley, S. A. and Barker, M. F. 2010. The response of two ecologically important Antarctic invertebrates ( Sterechinus neumayeri and Parborlasia corrugatus) to reduced seawater pH: effects on fertilisation and embryonic development. Marine Biology 157(12): 2689-2702.
European Science Foundation 2009. Impacts of ocean acidification, Science Policy Briefing. 37: 1-12.
Findlay, H. S., Kendall, M. A., Spicer, J. I. and Widdicombe, S. 2009. Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Marine Ecology Progress Series 389: 193-202.
Findlay, H. S., Kendall, M. A., Spicer, J. I. and Widdicombe, S. 2010a. Post-larval development of two intertidal barnacles at elevated CO2 and temperature. Marine Biology 157(4): 725-735.
Findlay, H. S., Kendall, M. A., Spicer, J. I. and Widdicombe, S. 2010b. Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae at the northern edge of their geographic distribution. Estuarine, Coastal and Shelf Science 86(4): 675-682.
Frommel, A. Y., Stiebens, V., Clemmesen, C. and Havenhand, J. 2010. Effect of ocean acidification on marine fish sperm (Baltic cod: Gadus morhua). Biogeosciences Discussions 7(4): 5859-5872.
Gattuso, J. P., Gao, K., Lee, K., Rost, B. and Schulz, K. G. 2010. Approaches and tools to manipulate the carbonate chemistry Pp. 41-51 in Guide to Best Practices for Ocean Acidification Research and Data Reporting, edited by U. Riebesell, V. J. Fabry, L. Hansson and J. P. Gattuso. Publications Office of the European Union, Luxembourg.
Gazeau, F., Gattuso, J. P., Dawber, C., Pronker, A. E., Peene, F., Peene, J., Heip, C. H. R. and Middelburg, J. J. 2010. Effect of ocean acidification on the early life stages of the blue mussel ( Mytilus edulis). Biogeosciences Discussions 7(2): 2927-2947.
Gooding, R. A., Harley, C. D. G. and Tang, E. 2009. Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. Proceedings of the National Academy of Sciences of the United States of America 106(23): 9316-9321.
Gosselin, L. A. and Qian, P. Y. 1997. Juvenile mortality in benthic marine invertebrates. Marine Ecology Progress Series 146(1-3): 265-282.
Green, M. A., Jones, M. E., Boudreau, C. L., Moore, R. L. and Westman, B. A. 2004. Dissolution mortality of juvenile bivalves in coastal marine deposits. Limnology and Oceanography 49(3): 727-734.
Guinotte, J. M. and Fabry, V. J. 2008. Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy of Sciences 1134: 320-342.
Gutowska, M. A. and Melzner, F. 2009. Abiotic conditions in cephalopod ( Sepia officinalis) eggs: Embryonic development at low pH and high pCO2Marine Biology 156(3): 515-519.
Gutowska, M. A., Pörtner, H. O. and Melzner, F. 2008. Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2Marine Ecology Progress Series 373: 303-309.
Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S. M., Rowley, S. J., Tedesco, D. and Buia, M. C. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454(7200): 96-99.
Hart, M. W. and Strathmann, R. R. 1995. Mechanisms and rates of suspension feeding Pp. 193-222 in Ecology of Marine Invertebrate Larvae, edited by L. McEdward. CRC Press, Boca Raton, FL, USA.
Hauton, C., Tyrrell, T. and Williams, J. 2009. The subtle effects of sea water acidification on the amphipod Gammarus locusta.Biogeosciences Discussions 6(1): 919-946.
Havenhand, J. N., Buttler, F. R., Thorndyke, M. C. and Williamson, J. E. 2008. Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Current Biology 18(15).
Havenhand, J. N. and Schlegel, P. 2009. Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas.Biogeosciences 6(12): 3009-3015.
Hayakaze, E. and Tanabe, K. 1999. Early larval shell development in mytilid bivalve Mytilus galloprovincialis.Venus 58: 119-127.
Hendriks, I. E. and Duarte, C. M. 2010. Ocean acidification: separating evidence from judgment - A reply to Dupont et al. Estuarine, Coastal and Shelf Science 89(2): 186-190.
Hendriks, I. E., Duarte, C. M. and Álvarez, M. 2010. Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuarine, Coastal and Shelf Science 86(2): 157-164.
Hofmann, G. E., Barry, J. P., Edmunds, P. J., Gates, R. D., Hutchins, D. A., Klinger, T. and Sewell, M. A. 2010. The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Annual Review of Ecology, Evolution, and Systematics 41: 127-147.
Intergovernmental Panel on Climate Change 2001. The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell and C. A. Johnson. Cambridge University Press, Cambridge, UK, New York, USA.
Intergovernmental Panel on Climate Change 2007. Synthesis Report: Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by R. K. Pachauri and A. Reisinger. Intergovernmental Panel on Climate Change, Geneva, Switzerland.
Jokiel, P. L., Rodgers, K. S., Kuffner, I. B., Andersson, A. J., Cox, E. F. and Mackenzie, F. T. 2008. Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27(3): 473-483.
Kikkawa, T., Ishimatsu, A. and Kita, J. 2003. Acute CO2 tolerance during the early developmental stages of four marine teleosts. Environmental toxicology 18(6): 375-382.
Kleypas, J. A., Buddemeier, R. W., Archer, D., Gattuso, J. P., Langdon, C. and Opdyke, B. N. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284(5411): 118-120.
Kroeker, K. J., Kordas, R. L., Crim, R. N. and Singh, G. G. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13(11): 1419-1434.
Kurihara, H. 2008. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series 373: 275-284.
Kurihara, H., Asai, T., Kato, S. and Ishimatsu, A. 2008a. Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis.Aquatic Biology 4(3): 225-233.
Kurihara, H. and Ishimatsu, A. 2008. Effects of high CO2 seawater on the copepod ( Acartia tsuensis) through all life stages and subsequent generations. Marine Pollution Bulletin 56(6): 1086-1090.
Kurihara, H., Kato, S. and Ishimatsu, A. 2007. Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas.Aquatic Biology 1: 91-98.
Kurihara, H., Matsui, M., Furukawa, H., Hayashi, M. and Ishimatsu, A. 2008b. Long-term effects of predicted future seawater CO2 conditions on the survival and growth of the marine shrimp Palaemon pacificus.Journal of Experimental Marine Biology and Ecology 367(1): 41-46.
Kurihara, H., Shimode, S. and Shirayama, Y. 2004a. Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods ( Acartia steueri and Acartia erythraea). Marine Pollution Bulletin 49(9-10): 721-727.
Kurihara, H., Shimode, S. and Shirayama, Y. 2004b. Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. Journal of Oceanography 60(4): 743-750.
Kurihara, H. and Shirayama, Y. 2004. Effects of increased atmospheric CO2 on sea urchin early development. Marine Ecology Progress Series 274: 161-169.
Lacoue-Labarthe, T., Martin, S., Oberhänsli, F., Teyssié, J. L., Markich, S., Ross, J. and Bustamante, P. 2009. Effects of increased pCO2 and temperature on trace element (Ag, Cd and Zn) bioaccumulation in the eggs of the common cuttlefish, Sepia officinalis.Biogeosciences 6(11): 2561-2573.
Lischka, S., Büdenbender, J., Boxhammer, T. and Riebesell, U. 2010. Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth. Biogeosciences Discussions 7(6): 8177-8214.
Martin, S. and Gattuso, J. P. 2009. Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Global Change Biology 15(8): 2089-2100.
Martin, S., Richier, S., Pedrotti, M.-L., Dupont, S., Castejon, C., Gerakis, Y., Kerros, M.-E., Oberhänsli, F., Teyssié, J.-L., Jeffree, R. and Gattuso, J.-P. 2011. Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. Journal of Experimental Biology 214(8): 1357-1368.
Mayor, D. J., Matthews, C., Cook, K., Zuur, A. F. and Hay, S. 2007. CO2-induced acidification affects hatching success in Calanus finmarchicus.Marine Ecology Progress Series 350: 91-97.
McDonald, M. R., McClintock, J. B., Amsler, C. D., Rittschof, D., Angus, R. A., Orihuela, B. and Lutostanski, K. 2009. Effects of ocean acidification over the life history of the barnacle Amphibalanus amphitrite.Marine Ecology Progress Series 385: 179-187.
Metzger, R., Sartoris, F. J., Langenbuch, M. and Pörtner, H. O. 2007. Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus.Journal of thermal biology 32(3): 144-151.
Miller, A. W., Reynolds, A. C., Sobrino, C. and Riedel, G. F. 2009. Shellfish face uncertain future in high CO2 world: Influence of acidification on oyster larvae calcification and growth in estuaries. PLoS ONE 4(5).
Morita, M., Suwa, R., Iguchi, A., Nakamura, M., Shimada, K., Sakai, K. and Suzuki, A. 2010. Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates. Zygote 18(2): 103-107.
Moulin, L., Catarino, A. I., Claessens, T. and Dubois, P. 2011. Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). Marine Pollution Bulletin 62(1): 48-54.
Munday, P. L., Crawley, N. E. and Nilsson, G. E. 2009a. Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Marine Ecology Progress Series 388: 235-242.
Munday, P. L., Dixson, D. L., Donelson, J. M., Jones, G. P., Pratchett, M. S., Devitsina, G. V. and Døving, K. B. 2009b. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proceedings of the National Academy of Sciences of the United States of America 106(6): 1848-1852.
Munday, P. L., Donelson, J. M., Dixson, D. L. and Endo, G. G. K. 2009c. Effects of ocean acidification on the early life history of a tropical marine fish. Proceedings of the Royal Society B: Biological Sciences 276(1671): 3275-3283.
O'Donnell, M. J., Hammond, L. M. and Hofmann, G. E. 2009. Predicted impact of ocean acidification on a marine invertebrate: elevated CO2 alters response to thermal stress in sea urchin larvae. Marine Biology 156(3): 439-446.
O'Donnell, M. J., Todgham, A. E., Sewell, M. A., Hammond, L. M., Ruggiero, K., Fangue, N. A., Zippay, M. L. and Hofmann, G. E. 2009. Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Marine Ecology Progress Series 398: 157-171.
Orr, J. C., Caldeira, K., Fabry, V., Gattuso, J. P., Haugan, P., Lehodey, P., Pantoja, S., Pörtner, H. O., Riebesell, U., Trull, T., Hood, M., Urban, E. and Broadgate, W. 2009. Research priorities for ocean acidification. Report from the second symposium on the ocean in a high-CO2 world, Monaco, October 6-9, 2008, Convened by SCOR, IOCUNESCO, IAEA, and IGBP.
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G. K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M. F., Yamanaka, Y. and Yool, A. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059): 681-686.
Pagano, G., Cipollaro, M. and Corsale, G. 1985a. pH-Induced changes in mitotic and developmental patterns in sea urchin embryogenesis. I. Exposure of embryos. Teratogenesis Carcinogenesis and Mutagenesis 5(2): 101-112.
Pagano, G., Cipollaro, M. and Corsale, G. 1985b. pH-Induced changes in mitotic and developmental patterns in sea urchin embryogenesis. II. Exposure of sperm. Teratogenesis Carcinogenesis and Mutagenesis 5(2): 113-121.
Parker, L. M., Ross, P. M. and O'Connor, W. A. 2009. The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Global Change Biology 15(9): 2123-2136.
Parker, L. M., Ross, P. M. and O'Connor, W. A. 2010. Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Marine Biology 157(11): 2435-2452.
Parker, L. M., Ross, P. M. and O'Connor, W. A. 2011. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Marine Biology 158(3): 689-697.
Parker, L. M., Ross, P. M., O'Connor, W. A., Borysko, L., Raftos, D. A. and Portner, H. O. 2012. Adult exposure influences offspring response to ocean acidification in oysters. Global Change Biology. 18(1): 82-92.
Pörtner, H. O. 2008. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist's view. Marine Ecology Progress Series 373: 203-217.
Pörtner, H. O. and Farrell, A. P. 2008. Ecology: physiology and climate change. Science 322(5902): 690-692.
Pörtner, H. O., Langenbuch, M. and Reipschläger, A. 2004. Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. Journal of Oceanography 60(4): 705-718.
Przeslawski, R., Ahyong, S., Byrne, M., Wörheide, G. and Hutchings, P. 2008. Beyond corals and fish: the effects of climate change on noncoral benthic invertebrates of tropical reefs. Global Change Biology 14(12): 2773-2795.
Przeslawski, R. and Webb, A. R. 2009. Natural variation in larval size and developmental rate of the northern quahog Mercenaria mercenaria and associated effects on larval and juvenile fitness. Journal of Shellfish Research 28(3): 505-510.
Range, P., Chícharo, M. A., Ben-Hamadou, R., Piló, D., Matias, D., Joaquim, S., Oliveira, A. P. and Chícharo, L. 2011. Calcification, growth and mortality of juvenile clams Ruditapes decussatus under increased pCO2 and reduced pH: variable responses to ocean acidification at local scales? Journal of Experimental Marine Biology and Ecology 396(2): 177-184.
Reuter, K. E., Lotterhos, K. E., Crim, R. N., Thompson, C. A. and Harley, C. D. G. 2011. Elevated pCO2 increases sperm limitation and risk of polyspermy in the red sea urchin Strongylocentrotus franciscanus.Global Change Biology 17(1): 163-171.
Reynaud, S., Leclercq, N., Romaine-Lioud, S., Ferrier-Pagès, C., Jaubert, J. and Gattuso, J. P. 2003. Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biology 9(11): 1660-1668.
Royal Society 2005. Ocean acidification due to increasing atmospheric carbon dioxide. Policy Document 12/05,The Royal Society, London. Pp 1-58.
Sheppard Brennand, H., Soars, N., Dworjanyn, S. A., Davis, A. R. and Byrne, M. 2010. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla.PLoS ONE 5(6): e11372.
Strathmann, M. F. 1987. Opisthobranchia Pp. 268-302 in Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast, edited by M. F. Strathmann. University of Washington Press, Seattle, WA.
Suwa, R., Nakamura, M., Morita, M., Shimada, K., Iguchi, A., Sakai, K. and Suzuki, A. 2010. Effects of acidified seawater on early life stages of scleractinian corals (Genus Acropora). Fisheries Science 76(1): 93-99.
Talmage, S. C. and Gobler, C. J. 2010. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proceedings of the National Academy of Sciences of the United States of America 107(40): 17246-17251.
Thorson, G. 1950. Reproduction and larval ecology of marine bottom invertebrates. Biology Reviews 25: 1-45.
Todgham, A. E. and Hofmann, G. E. 2009. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. Journal of Experimental Biology 212(16): 2579-2594.
Turley, C., Blackford, J. C., Widdicombe, S., Lowe, D., Nightingale, P. D. and Rees, A. P. 2006. Reviewing the impact of increased atmospheric CO2 on oceanic pH and the marine ecosystem Pp. 65-70 in Avoiding Dangerous Climate Change, edited by H. J. Schellnhuber, W. Cramer, N. Nakicenovic, T. Wigley and G. Yohe. Cambridge University Press, Cambridge, UK.
Underwood, A. J. 1997. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press, Cambridge.
Waldbusser, G. G., Bergschneider, H. and Green, M. A. 2010. Size-dependent pH effect on calcification in post-larval hard clam Mercenaria spp. Marine Ecology Progress Series 417: 171-182.
Waller, T. R. 1981. Functional morphology and development of veliger larvae of the European oyster, Ostrea edulis Linn? Smithsonian Contributions to Zoology: 328: 1-70.
Walther, K., Anger, K. and Pörtner, H. O. 2010. Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54° vs. 79° N). Marine Ecology Progress Series 417: 159-170.
Watson, S. A., Southgate, P. C., Tyler, P. A. and Peck, L. S. 2009. Early larval development of the Sydney rock oyster Saccostrea glomerata under near-future predictions of CO2-driven ocean acidification. Journal of Shellfish Research 28(3): 431-437.
Wilson, S. P. and Hyne, R. V. 1997. Toxicity of acid-sulfate soil leachate and aluminum to embryos of the Sydney rock oyster. Ecotoxicology and Environmental Safety 37(1): 30-36.
Yu, P. C., Matson, P. G., Martz, T. R. and Hofmann, G. E. 2011. The ocean acidification seascape and its relationship to the performance of calcifying marine invertebrates: laboratory experiments on the development of urchin larvae framed by environmentally-relevant pCO2/pH. Journal of Experimental Marine Biology and Ecology 400(1-2): 288-295.
Zippay, M. L. and Hofmann, G. E. 2010. Effect of pH on gene expression and thermal tolerance of early life history stages of red abalone ( Haliotis rufescens). Journal of Shellfish Research 29(2): 429-439.
This content is PDF only. Please click on the PDF icon to access.

Contents

Data & Figures

References

Alvarado-Alvarez, R., Gould, M. C. and Stephano, J. L. 1996. Spawning, in vitro maturation, and changes in oocyte electrophysiology induced by serotonin in Tivela stultorum.Biological Bulletin 190(3): 322-328.
Anger, K. 1987. The DO threshold: a critical point in the larval development of decapod crustaceans. Journal of Experimental Marine Biology and Ecology 108(1): 15-30.
Anlauf, H., D'Croz, L. and O'Dea, A. 2011. A corrosive concoction: The combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative. Journal of Experimental Marine Biology and Ecology 397(1): 13-20.
Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. and Hoegh-Guldberg, O. 2008. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences of the United States of America 105(45): 17442-17446.
Arnold, K. E., Findlay, H. S., Spicer, J. I., Daniels, C. L. and Boothroyd, D. 2009. Effect of CO2-related acidification on aspects of the larval development of the European lobster, Homarus gammarus (L.). Biogeosciences 6(8): 1747-1754.
Beiras, R. and His, E. 1994. Effects of dissolved mercury on embryogenesis, survival, growth and metamorphosis of Crassostrea gigas oyster larvae. Marine Ecology Progress Series 113(1-2): 95-104.
Bibby, R., Widdicombe, S., Parry, H., Spicer, J. and Pipe, R. 2008. Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis.Aquatic Biology 2(1): 67-74.
Byrne, M. 2011. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanography and Marine Biology - An Annual Review 49: 1-42.
Byrne, M., Ho, M., Selvakumaraswamy, P., Nguyen, H. D., Dworjanyn, S. A. and Davis, A. R. 2009. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proceedings of the Royal Society B: Biological Sciences 276(1663): 1883-1888.
Byrne, M., Ho, M., Wong, E., Selvakumaraswamy, P., Sheppard Brennand, H., Dworjanyn, S. A. and Davis, A. R. 2011a. Unshelled abalone and corrupted urchins, development of marine calcifiers in a changing ocean. Proceedings of the Royal Society B: Biological Sciences 278(1716): 2376-2383.
Byrne, M., Selvakumaraswamy, P., Ho, M. A., Woolsey, E. and Nguyen, H. D. 2011b. Sea urchin development in a global change hotspot, potential for southerly migration of thermotolerant propagules. Deep-Sea Research Part II: Topical Studies in Oceanography 58(5): 712-719.
Byrne, M., Soars, N. A., Ho, M. A., Wong, E., McElroy, D., Selvakumaraswamy, P., Dworjanyn, S. A. and Davis, A. R. 2010a. Fertilization in a suite of coastal marine invertebrates from SE Australia is robust to near-future ocean warming and acidification. Marine Biology 157(9): 2061-2069.
Byrne, M., Soars, N.A., Selvakumaraswamy, P., Dworjanyn, S. A. and Davis, A. R. 2010b. Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Marine Environmental Research 69(4): 234-239.
Calabrese, A. and Davis, H. C. 1966. The pH tolerance of embryos and larvae of Mercenaria mercenaria and Crassostrea virginica.Biological Bulletin 131(3): pp. 427-436.
Caldeira, K. and Wickett, M. 2005. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research C: Oceans 110(9): 1-12.
Caldeira, K. and Wickett, M. E. 2003. Anthropogenic carbon and ocean pH. Nature 425(6956): 365.
Cigliano, M., Gambi, M. C., Rodolfo-Metalpa, R., Patti, F. P. and Hall-Spencer, J. M. 2010. Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Marine Biology 157(11): 2489-2502.
Cipollaro, M., Corsale, G. and Esposito, A. 1986. Sublethal pH decrease may cause genetic damage to eukaryotic cell: A study on sea urchins and Salmonella typhimurium.Teratogenesis Carcinogenesis and Mutagenesis 6(4): 275-287.
Clark, D., Lamare, M. and Barker, M. 2009. Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: A comparison among a tropical, temperate, and a polar species. Marine Biology 156(6): 1125-1137.
Comeau, S., Gorsky, G., Alliouane, S. and Gattuso, J. P. 2010. Larvae of the pteropod Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-less. Marine Biology 157(10): 2341-2345.
Connell, J. H. 1975. Some mechanisms producing structure in natural communities: a model and evidence from field experiments Pp. 460-490 in Ecology and Evolution of Communities, edited by M. Cody and J. Diamond. Harvard University Press, Cambridge, MA, USA.
Crim, R. N., Sunday, J. M. and Harley, C. D. G. 2011. Elevated seawater CO2 concentrations impair larval development and reduce larval survival in endangered northern abalone ( Haliotis kamtschatkana). Journal of Experimental Marine Biology and Ecology 400(1-2): 272-277.
Desrosiers, R. R., Désilets, J. and Dubé, F. 1996. Early developmental events following fertilization in the giant scallop Placopecten magellanicus.Canadian Journal of Fisheries and Aquatic Sciences 53(6): 1382-1392.
Doney, S. C., Fabry, V. J., Feely, R. A. and Kleypas, J. A. 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1(1): 169-192.
Dupont, S., Dorey, N. and Thorndyke, M. 2010a. What metaanalysis can tell us about vulnerability of marine biodiversity to ocean acidification? Estuarine, Coastal and Shelf Science 89(2): 182-185.
Dupont, S., Havenhand, J., Thorndyke, W., Peck, L. and Thorndyke, M. 2008. Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis.Marine Ecology Progress Series 373: 285-294.
Dupont, S., Lundve, B. and Thorndyke, M. 2010b. Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus.Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 314 B(5): 382-389.
Dupont, S., Ortega-Martínez, O. and Thorndyke, M. 2010c. Impact of near-future ocean acidification on echinoderms. Ecotoxicology 19(3): 449-462.
Dupont, S. and Thorndyke, M. C. 2009. Impact of CO2-driven ocean acidification on invertebrates early life-history - What we know, what we need to know and what we can do. Biogeosciences Discussions 6(2): 3109-3131.
Egilsdottir, H., Spicer, J. I. and Rundle, S. D. 2009. The effect of CO2 acidified sea water and reduced salinity on aspects of the embryonic development of the amphipod Echinogammarus marinus (Leach). Marine Pollution Bulletin 58(8): 1187-1191.
Ellis, R. P., Bersey, J., Rundle, S. D., Hall-Spencer, J. M. and Spicer, J. I. 2009. Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, Littorina obtusata.Aquatic Biology 5(1): 41-48.
Ericson, J. A., Lamare, M. D., Morley, S. A. and Barker, M. F. 2010. The response of two ecologically important Antarctic invertebrates ( Sterechinus neumayeri and Parborlasia corrugatus) to reduced seawater pH: effects on fertilisation and embryonic development. Marine Biology 157(12): 2689-2702.
European Science Foundation 2009. Impacts of ocean acidification, Science Policy Briefing. 37: 1-12.
Findlay, H. S., Kendall, M. A., Spicer, J. I. and Widdicombe, S. 2009. Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Marine Ecology Progress Series 389: 193-202.
Findlay, H. S., Kendall, M. A., Spicer, J. I. and Widdicombe, S. 2010a. Post-larval development of two intertidal barnacles at elevated CO2 and temperature. Marine Biology 157(4): 725-735.
Findlay, H. S., Kendall, M. A., Spicer, J. I. and Widdicombe, S. 2010b. Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae at the northern edge of their geographic distribution. Estuarine, Coastal and Shelf Science 86(4): 675-682.
Frommel, A. Y., Stiebens, V., Clemmesen, C. and Havenhand, J. 2010. Effect of ocean acidification on marine fish sperm (Baltic cod: Gadus morhua). Biogeosciences Discussions 7(4): 5859-5872.
Gattuso, J. P., Gao, K., Lee, K., Rost, B. and Schulz, K. G. 2010. Approaches and tools to manipulate the carbonate chemistry Pp. 41-51 in Guide to Best Practices for Ocean Acidification Research and Data Reporting, edited by U. Riebesell, V. J. Fabry, L. Hansson and J. P. Gattuso. Publications Office of the European Union, Luxembourg.
Gazeau, F., Gattuso, J. P., Dawber, C., Pronker, A. E., Peene, F., Peene, J., Heip, C. H. R. and Middelburg, J. J. 2010. Effect of ocean acidification on the early life stages of the blue mussel ( Mytilus edulis). Biogeosciences Discussions 7(2): 2927-2947.
Gooding, R. A., Harley, C. D. G. and Tang, E. 2009. Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. Proceedings of the National Academy of Sciences of the United States of America 106(23): 9316-9321.
Gosselin, L. A. and Qian, P. Y. 1997. Juvenile mortality in benthic marine invertebrates. Marine Ecology Progress Series 146(1-3): 265-282.
Green, M. A., Jones, M. E., Boudreau, C. L., Moore, R. L. and Westman, B. A. 2004. Dissolution mortality of juvenile bivalves in coastal marine deposits. Limnology and Oceanography 49(3): 727-734.
Guinotte, J. M. and Fabry, V. J. 2008. Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy of Sciences 1134: 320-342.
Gutowska, M. A. and Melzner, F. 2009. Abiotic conditions in cephalopod ( Sepia officinalis) eggs: Embryonic development at low pH and high pCO2Marine Biology 156(3): 515-519.
Gutowska, M. A., Pörtner, H. O. and Melzner, F. 2008. Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2Marine Ecology Progress Series 373: 303-309.
Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S. M., Rowley, S. J., Tedesco, D. and Buia, M. C. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454(7200): 96-99.
Hart, M. W. and Strathmann, R. R. 1995. Mechanisms and rates of suspension feeding Pp. 193-222 in Ecology of Marine Invertebrate Larvae, edited by L. McEdward. CRC Press, Boca Raton, FL, USA.
Hauton, C., Tyrrell, T. and Williams, J. 2009. The subtle effects of sea water acidification on the amphipod Gammarus locusta.Biogeosciences Discussions 6(1): 919-946.
Havenhand, J. N., Buttler, F. R., Thorndyke, M. C. and Williamson, J. E. 2008. Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Current Biology 18(15).
Havenhand, J. N. and Schlegel, P. 2009. Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas.Biogeosciences 6(12): 3009-3015.
Hayakaze, E. and Tanabe, K. 1999. Early larval shell development in mytilid bivalve Mytilus galloprovincialis.Venus 58: 119-127.
Hendriks, I. E. and Duarte, C. M. 2010. Ocean acidification: separating evidence from judgment - A reply to Dupont et al. Estuarine, Coastal and Shelf Science 89(2): 186-190.
Hendriks, I. E., Duarte, C. M. and Álvarez, M. 2010. Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuarine, Coastal and Shelf Science 86(2): 157-164.
Hofmann, G. E., Barry, J. P., Edmunds, P. J., Gates, R. D., Hutchins, D. A., Klinger, T. and Sewell, M. A. 2010. The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Annual Review of Ecology, Evolution, and Systematics 41: 127-147.
Intergovernmental Panel on Climate Change 2001. The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell and C. A. Johnson. Cambridge University Press, Cambridge, UK, New York, USA.
Intergovernmental Panel on Climate Change 2007. Synthesis Report: Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by R. K. Pachauri and A. Reisinger. Intergovernmental Panel on Climate Change, Geneva, Switzerland.
Jokiel, P. L., Rodgers, K. S., Kuffner, I. B., Andersson, A. J., Cox, E. F. and Mackenzie, F. T. 2008. Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27(3): 473-483.
Kikkawa, T., Ishimatsu, A. and Kita, J. 2003. Acute CO2 tolerance during the early developmental stages of four marine teleosts. Environmental toxicology 18(6): 375-382.
Kleypas, J. A., Buddemeier, R. W., Archer, D., Gattuso, J. P., Langdon, C. and Opdyke, B. N. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284(5411): 118-120.
Kroeker, K. J., Kordas, R. L., Crim, R. N. and Singh, G. G. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13(11): 1419-1434.
Kurihara, H. 2008. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series 373: 275-284.
Kurihara, H., Asai, T., Kato, S. and Ishimatsu, A. 2008a. Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis.Aquatic Biology 4(3): 225-233.
Kurihara, H. and Ishimatsu, A. 2008. Effects of high CO2 seawater on the copepod ( Acartia tsuensis) through all life stages and subsequent generations. Marine Pollution Bulletin 56(6): 1086-1090.
Kurihara, H., Kato, S. and Ishimatsu, A. 2007. Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas.Aquatic Biology 1: 91-98.
Kurihara, H., Matsui, M., Furukawa, H., Hayashi, M. and Ishimatsu, A. 2008b. Long-term effects of predicted future seawater CO2 conditions on the survival and growth of the marine shrimp Palaemon pacificus.Journal of Experimental Marine Biology and Ecology 367(1): 41-46.
Kurihara, H., Shimode, S. and Shirayama, Y. 2004a. Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods ( Acartia steueri and Acartia erythraea). Marine Pollution Bulletin 49(9-10): 721-727.
Kurihara, H., Shimode, S. and Shirayama, Y. 2004b. Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. Journal of Oceanography 60(4): 743-750.
Kurihara, H. and Shirayama, Y. 2004. Effects of increased atmospheric CO2 on sea urchin early development. Marine Ecology Progress Series 274: 161-169.
Lacoue-Labarthe, T., Martin, S., Oberhänsli, F., Teyssié, J. L., Markich, S., Ross, J. and Bustamante, P. 2009. Effects of increased pCO2 and temperature on trace element (Ag, Cd and Zn) bioaccumulation in the eggs of the common cuttlefish, Sepia officinalis.Biogeosciences 6(11): 2561-2573.
Lischka, S., Büdenbender, J., Boxhammer, T. and Riebesell, U. 2010. Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth. Biogeosciences Discussions 7(6): 8177-8214.
Martin, S. and Gattuso, J. P. 2009. Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Global Change Biology 15(8): 2089-2100.
Martin, S., Richier, S., Pedrotti, M.-L., Dupont, S., Castejon, C., Gerakis, Y., Kerros, M.-E., Oberhänsli, F., Teyssié, J.-L., Jeffree, R. and Gattuso, J.-P. 2011. Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. Journal of Experimental Biology 214(8): 1357-1368.
Mayor, D. J., Matthews, C., Cook, K., Zuur, A. F. and Hay, S. 2007. CO2-induced acidification affects hatching success in Calanus finmarchicus.Marine Ecology Progress Series 350: 91-97.
McDonald, M. R., McClintock, J. B., Amsler, C. D., Rittschof, D., Angus, R. A., Orihuela, B. and Lutostanski, K. 2009. Effects of ocean acidification over the life history of the barnacle Amphibalanus amphitrite.Marine Ecology Progress Series 385: 179-187.
Metzger, R., Sartoris, F. J., Langenbuch, M. and Pörtner, H. O. 2007. Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus.Journal of thermal biology 32(3): 144-151.
Miller, A. W., Reynolds, A. C., Sobrino, C. and Riedel, G. F. 2009. Shellfish face uncertain future in high CO2 world: Influence of acidification on oyster larvae calcification and growth in estuaries. PLoS ONE 4(5).
Morita, M., Suwa, R., Iguchi, A., Nakamura, M., Shimada, K., Sakai, K. and Suzuki, A. 2010. Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates. Zygote 18(2): 103-107.
Moulin, L., Catarino, A. I., Claessens, T. and Dubois, P. 2011. Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). Marine Pollution Bulletin 62(1): 48-54.
Munday, P. L., Crawley, N. E. and Nilsson, G. E. 2009a. Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Marine Ecology Progress Series 388: 235-242.
Munday, P. L., Dixson, D. L., Donelson, J. M., Jones, G. P., Pratchett, M. S., Devitsina, G. V. and Døving, K. B. 2009b. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proceedings of the National Academy of Sciences of the United States of America 106(6): 1848-1852.
Munday, P. L., Donelson, J. M., Dixson, D. L. and Endo, G. G. K. 2009c. Effects of ocean acidification on the early life history of a tropical marine fish. Proceedings of the Royal Society B: Biological Sciences 276(1671): 3275-3283.
O'Donnell, M. J., Hammond, L. M. and Hofmann, G. E. 2009. Predicted impact of ocean acidification on a marine invertebrate: elevated CO2 alters response to thermal stress in sea urchin larvae. Marine Biology 156(3): 439-446.
O'Donnell, M. J., Todgham, A. E., Sewell, M. A., Hammond, L. M., Ruggiero, K., Fangue, N. A., Zippay, M. L. and Hofmann, G. E. 2009. Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Marine Ecology Progress Series 398: 157-171.
Orr, J. C., Caldeira, K., Fabry, V., Gattuso, J. P., Haugan, P., Lehodey, P., Pantoja, S., Pörtner, H. O., Riebesell, U., Trull, T., Hood, M., Urban, E. and Broadgate, W. 2009. Research priorities for ocean acidification. Report from the second symposium on the ocean in a high-CO2 world, Monaco, October 6-9, 2008, Convened by SCOR, IOCUNESCO, IAEA, and IGBP.
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G. K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M. F., Yamanaka, Y. and Yool, A. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059): 681-686.
Pagano, G., Cipollaro, M. and Corsale, G. 1985a. pH-Induced changes in mitotic and developmental patterns in sea urchin embryogenesis. I. Exposure of embryos. Teratogenesis Carcinogenesis and Mutagenesis 5(2): 101-112.
Pagano, G., Cipollaro, M. and Corsale, G. 1985b. pH-Induced changes in mitotic and developmental patterns in sea urchin embryogenesis. II. Exposure of sperm. Teratogenesis Carcinogenesis and Mutagenesis 5(2): 113-121.
Parker, L. M., Ross, P. M. and O'Connor, W. A. 2009. The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Global Change Biology 15(9): 2123-2136.
Parker, L. M., Ross, P. M. and O'Connor, W. A. 2010. Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Marine Biology 157(11): 2435-2452.
Parker, L. M., Ross, P. M. and O'Connor, W. A. 2011. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Marine Biology 158(3): 689-697.
Parker, L. M., Ross, P. M., O'Connor, W. A., Borysko, L., Raftos, D. A. and Portner, H. O. 2012. Adult exposure influences offspring response to ocean acidification in oysters. Global Change Biology. 18(1): 82-92.
Pörtner, H. O. 2008. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist's view. Marine Ecology Progress Series 373: 203-217.
Pörtner, H. O. and Farrell, A. P. 2008. Ecology: physiology and climate change. Science 322(5902): 690-692.
Pörtner, H. O., Langenbuch, M. and Reipschläger, A. 2004. Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. Journal of Oceanography 60(4): 705-718.
Przeslawski, R., Ahyong, S., Byrne, M., Wörheide, G. and Hutchings, P. 2008. Beyond corals and fish: the effects of climate change on noncoral benthic invertebrates of tropical reefs. Global Change Biology 14(12): 2773-2795.
Przeslawski, R. and Webb, A. R. 2009. Natural variation in larval size and developmental rate of the northern quahog Mercenaria mercenaria and associated effects on larval and juvenile fitness. Journal of Shellfish Research 28(3): 505-510.
Range, P., Chícharo, M. A., Ben-Hamadou, R., Piló, D., Matias, D., Joaquim, S., Oliveira, A. P. and Chícharo, L. 2011. Calcification, growth and mortality of juvenile clams Ruditapes decussatus under increased pCO2 and reduced pH: variable responses to ocean acidification at local scales? Journal of Experimental Marine Biology and Ecology 396(2): 177-184.
Reuter, K. E., Lotterhos, K. E., Crim, R. N., Thompson, C. A. and Harley, C. D. G. 2011. Elevated pCO2 increases sperm limitation and risk of polyspermy in the red sea urchin Strongylocentrotus franciscanus.Global Change Biology 17(1): 163-171.
Reynaud, S., Leclercq, N., Romaine-Lioud, S., Ferrier-Pagès, C., Jaubert, J. and Gattuso, J. P. 2003. Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biology 9(11): 1660-1668.
Royal Society 2005. Ocean acidification due to increasing atmospheric carbon dioxide. Policy Document 12/05,The Royal Society, London. Pp 1-58.
Sheppard Brennand, H., Soars, N., Dworjanyn, S. A., Davis, A. R. and Byrne, M. 2010. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla.PLoS ONE 5(6): e11372.
Strathmann, M. F. 1987. Opisthobranchia Pp. 268-302 in Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast, edited by M. F. Strathmann. University of Washington Press, Seattle, WA.
Suwa, R., Nakamura, M., Morita, M., Shimada, K., Iguchi, A., Sakai, K. and Suzuki, A. 2010. Effects of acidified seawater on early life stages of scleractinian corals (Genus Acropora). Fisheries Science 76(1): 93-99.
Talmage, S. C. and Gobler, C. J. 2010. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proceedings of the National Academy of Sciences of the United States of America 107(40): 17246-17251.
Thorson, G. 1950. Reproduction and larval ecology of marine bottom invertebrates. Biology Reviews 25: 1-45.
Todgham, A. E. and Hofmann, G. E. 2009. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. Journal of Experimental Biology 212(16): 2579-2594.
Turley, C., Blackford, J. C., Widdicombe, S., Lowe, D., Nightingale, P. D. and Rees, A. P. 2006. Reviewing the impact of increased atmospheric CO2 on oceanic pH and the marine ecosystem Pp. 65-70 in Avoiding Dangerous Climate Change, edited by H. J. Schellnhuber, W. Cramer, N. Nakicenovic, T. Wigley and G. Yohe. Cambridge University Press, Cambridge, UK.
Underwood, A. J. 1997. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press, Cambridge.
Waldbusser, G. G., Bergschneider, H. and Green, M. A. 2010. Size-dependent pH effect on calcification in post-larval hard clam Mercenaria spp. Marine Ecology Progress Series 417: 171-182.
Waller, T. R. 1981. Functional morphology and development of veliger larvae of the European oyster, Ostrea edulis Linn? Smithsonian Contributions to Zoology: 328: 1-70.
Walther, K., Anger, K. and Pörtner, H. O. 2010. Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54° vs. 79° N). Marine Ecology Progress Series 417: 159-170.
Watson, S. A., Southgate, P. C., Tyler, P. A. and Peck, L. S. 2009. Early larval development of the Sydney rock oyster Saccostrea glomerata under near-future predictions of CO2-driven ocean acidification. Journal of Shellfish Research 28(3): 431-437.
Wilson, S. P. and Hyne, R. V. 1997. Toxicity of acid-sulfate soil leachate and aluminum to embryos of the Sydney rock oyster. Ecotoxicology and Environmental Safety 37(1): 30-36.
Yu, P. C., Matson, P. G., Martz, T. R. and Hofmann, G. E. 2011. The ocean acidification seascape and its relationship to the performance of calcifying marine invertebrates: laboratory experiments on the development of urchin larvae framed by environmentally-relevant pCO2/pH. Journal of Experimental Marine Biology and Ecology 400(1-2): 288-295.
Zippay, M. L. and Hofmann, G. E. 2010. Effect of pH on gene expression and thermal tolerance of early life history stages of red abalone ( Haliotis rufescens). Journal of Shellfish Research 29(2): 429-439.
Close Modal

or Create an Account

Close Modal
Close Modal