Sudomotor responses (SR) and active vasodilation (AVD) are the primary means of heat dissipation during passive heat stress (PHS). It is unknown if they are controlled by a single or separate set of nerves. Older qualitative studies suggest that persons with spinal cord injury (SCI) have discordant areas of sweating and vasodilation.


To test the hypothesis that neural control of SR and AVD is through separate nerves by measuring SR and vasodilation in persons with SCI to determine if these areas are concordant or discordant.


Nine persons with tetraplegia, 13 with paraplegia, and nine able-bodied controls underwent PHS (core temperature rise 1°C) twice. Initially, the starch iodine test measured SR post-PHS in skin surface areas surrounding the level of injury. Subsequently, laser Doppler imagery scans measured vasodilation pre- and post-PHS in areas with and without SR. Percent change in red blood cell (RBC) flux was compared in areas with and without SR.


Persons with tetraplegia were anhidrotic on all areas; however, the same areas demonstrated minimal RBC flux change significantly less than equivalent able-bodied skin surface areas. In persons with paraplegia, areas of intact SR correlated with areas of RBC flux change quantitatively comparable to able-bodied persons. In anhidrotic areas, RBC flux change was significantly less than areas with SR and likely resulted from non-AVD mechanisms.


In persons with SCI under PHS, areas with intact SR and AVD are concordant, suggesting these two aspects of thermoregulation are controlled by a single set of nerves.

You do not currently have access to this content.