Objective: To systematically review the evidence for the efficacy of different rehabilitation strategies on functional ambulation following spinal cord injury (SCI). Method: A key word literature search of original articles was used to identify published literature evaluating the effectiveness of any treatment or therapy on functional ambulation in people with SCI. The rigor and quality of each study were scored on standardized scales by two independent reviewers. Results: The search yielded 160 articles, of which 119 were excluded for not meeting inclusion criteria. The remaining 41 articles covered various strategies for improving gait: body-weight—supported treadmill training (BWSTT) (n = 12), functional electrical stimulation (FES) (n = 7), braces/orthoses (n = 10), or a combination of these (n = 12). There is strong evidence from randomized controlled trials that functional ambulation outcomes following BWSTT are comparable to an equivalent intensity of overground gait training in subacute SCI. In chronic SCI, evidence from pretest/posttest studies shows that BWSTT may be effective in improving functional ambulation. Pretest/posttest or posttest-only studies provide evidence that FES may augment functional ambulation in persons with subacute/chronic SCI, whereas braces may afford particular benefits to people with complete SCI to stand up and ambulate with assistive devices. Conclusion: Rehabilitation strategies that facilitate repeated practice of gait offer the greatest benefits to functional ambulation in subacute or chronic SCI. Supportive devices may augment functional ambulation particularly in people with incomplete SCI.

National Spinal Cord Injury Statistical Center. Facts and Figures at a Glance. Birmingham, AL: 2006.
Marino RJ, Ditunno JJF, Donovan WH, et al. Neurologic recovery after traumatic spinal cord injury: data from the model spinal cord injury systems. Arch Phys Med Rehabil. 1999;80:1391–1396, (doi: 10.1016/S0003-9993(97)90326-9).
et, al
Neurologic recovery after traumatic spinal cord injury: data from the model spinal cord injury systems
Arch Phys Med Rehabil
1999
, vol. 
 (pg. 
1391
-
1396
)
Burns SP, Golding DG, Rolle WA Jr, et al. Recovery of ambulation in motor-incomplete tetraplegia. Arch Phys Med Rehabil. 1997;78:1169–1172.
et, al
Recovery of ambulation in motor-incomplete tetraplegia
Arch Phys Med Rehabil
1997
, vol. 
 (pg. 
1169
-
1172
)
Waters RL, Yakura JS, Adkins RH, et al. Recovery following complete paraplegia. Arch Phys Med Rehabil. 1992;73:784–789.
et, al
Recovery following complete paraplegia
Arch Phys Med Rehabil
1992
, vol. 
 (pg. 
784
-
789
)
Field-Fote EC, Lindley SD, Sherman AL. Locomotor training approaches for individuals with spinal cord injury: a preliminary report of walking-related outcomes. J Neurol Phys Ther. 2005;29:127–137.
Sherman, AL
Locomotor training approaches for individuals with spinal cord injury: a preliminary report of walking-related outcomes
J Neurol Phys Ther
2005
, vol. 
 (pg. 
127
-
137
)
Wirz M, Zemon DH, Rupp R, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005;86:672–680, (doi: 10.1016/j.apmr.2004.08.004).
et, al
Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial
Arch Phys Med Rehabil
2005
, vol. 
 (pg. 
672
-
680
)
Barbeau H, Fung J. The role of rehabilitation in the recovery of walking in the neurological population. Curr Opin Neurol. 2001;14:735–740, (doi: 10.1097/00019052-200112000-00009).
Fung, J
The role of rehabilitation in the recovery of walking in the neurological population
Curr Opin Neurol
2001
, vol. 
 (pg. 
735
-
740
)
Dietz V, Muller R. Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures. Brain. 2004;127(pt 10):2221–2231. Epub 2004 Jul 21. Medline CrossRef
Muller, R
Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures
Brain
2004
, vol. 
 (pg. 
2221
-
2231
)
Edgerton VR, Roy RR. Paralysis recovery in humans and model systems. Curr Opin Neurobiol. 2002;12:658–667, (doi: 10.1016/S0959-4388(02)00379-3).
Roy, RR
Paralysis recovery in humans and model systems
Curr Opin Neurobiol
2002
, vol. 
 (pg. 
658
-
667
)
Barbeau H, Rossignol S. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 1987;412:84–95, (doi: 10.1016/0006-8993(87)91442-9).
Rossignol, S
Recovery of locomotion after chronic spinalization in the adult cat
Brain Res
1987
, vol. 
 (pg. 
84
-
95
)
Effing TW, van Meeteren NL, van Asbeck FW, et al. Body weight-supported treadmill training in chronic incomplete spinal cord injury: a pilot study evaluating functional health status and quality of life. Spinal Cord. 2006;44:287–296, (doi: 10.1038/sj.sc.3101841).
et, al
Body weight-supported treadmill training in chronic incomplete spinal cord injury: a pilot study evaluating functional health status and quality of life
Spinal Cord
2006
, vol. 
 (pg. 
287
-
296
)
Dobkin B, Apple D, Barbeau H, et al. Weightsupported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006;66:484–493, (doi: 10.1212/01.wnl.0000202600.72018.39).
et, al
Weightsupported treadmill vs over-ground training for walking after acute incomplete SCI
Neurology
2006
, vol. 
 (pg. 
484
-
493
)
Winchester P, McColl R, Querry R, et al. Changes in supraspinal activation patterns following robotic locomotor therapy in motorincomplete spinal cord injury. Neurorehabil Neural Repair. 2005;19:313–324, (doi: 10.1177/1545968305281515).
et, al
Changes in supraspinal activation patterns following robotic locomotor therapy in motorincomplete spinal cord injury
Neurorehabil Neural Repair
2005
, vol. 
 (pg. 
313
-
324
)
Thomas SL, Gorassini MA. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J Neurophysiol. 2005;94:2844–2855, (doi: 10.1152/jn.00532.2005).
Gorassini, MA
Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury
J Neurophysiol
2005
, vol. 
 (pg. 
2844
-
2855
)
Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther. 2005;85:52–66.
Campbell, D
Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury
Phys Ther
2005
, vol. 
 (pg. 
52
-
66
)
Hicks AL, Adams MM, Martin Ginis K, et al. Long-term body-weight-supported treadmill training and subsequent follow-up in persons with chronic SCI: effects on functional walking ability and measures of subjective well-being. Spinal Cord. 2005;43:291–298, (doi: 10.1038/sj.sc.3101710).
et, al
Long-term body-weight-supported treadmill training and subsequent follow-up in persons with chronic SCI: effects on functional walking ability and measures of subjective well-being
Spinal Cord
2005
, vol. 
 (pg. 
291
-
298
)
Behrman AL, Lawless-Dixon AR, Davis SB, et al. Locomotor training progression and outcomes after incomplete spinal cord injury. Phys Ther. 2005;85:1356–1371.
et, al
Locomotor training progression and outcomes after incomplete spinal cord injury
Phys Ther
2005
, vol. 
 (pg. 
1356
-
1371
)
Protas EJ, Holmes SA, Qureshy H, et al. Supported treadmill ambulation training after spinal cord injury: a pilot study. Arch Phys Med Rehabil. 2001;82:825–831, (doi: 10.1053/apmr.2001.23198).
et, al
Supported treadmill ambulation training after spinal cord injury: a pilot study
Arch Phys Med Rehabil
2001
, vol. 
 (pg. 
825
-
831
)
Wernig A, Nanassy A, Muller S. Maintenance of locomotor abilities following Laufband (treadmill) therapy in para- and tetraplegic persons: follow-up studies. Spinal Cord. 1998;36:744–749, (doi: 10.1038/sj.sc.3100670).
Muller, S
Maintenance of locomotor abilities following Laufband (treadmill) therapy in para- and tetraplegic persons: follow-up studies
Spinal Cord
1998
, vol. 
 (pg. 
744
-
749
)
Gardner MB, Holden MK, Leikauskas JM, et al. Partial body weight support with treadmill locomotion to improve gait after incomplete spinal cord injury: a single-subject experimental design. Phys Ther. 1998;78:361–374.
et, al
Partial body weight support with treadmill locomotion to improve gait after incomplete spinal cord injury: a single-subject experimental design
Phys Ther
1998
, vol. 
 (pg. 
361
-
374
)
Wernig A, Muller S, Nanassy A, et al. Laufband therapy based on “rules of spinal locomotion” is effective in spinal cord injured persons. Eur J Neurosci. 1995;7:823–829, (doi: 10.1111/j.1460-9568.1995.tb00686.x).
et, al
Laufband therapy based on “rules of spinal locomotion” is effective in spinal cord injured persons
Eur J Neurosci
1995
, vol. 
 (pg. 
823
-
829
)
Wernig A, Muller S. Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia. 1992;30:229–238.
Muller, S
Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries
Paraplegia
1992
, vol. 
 (pg. 
229
-
238
)
Liberson WT, Holmquest HJ, Scot D, et al. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 1961;42:101–105.
et, al
Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients
Arch Phys Med Rehabil
1961
, vol. 
 (pg. 
101
-
105
)
Chaplin E. Functional neuromuscular stimulation for mobility in people with spinal cord injuries. The Parastep I System. J Spinal Cord Med. 1996;19:99–105.
Chaplin, E
Functional neuromuscular stimulation for mobility in people with spinal cord injuries. The Parastep I System
J Spinal Cord Med
1996
, vol. 
 (pg. 
99
-
105
)
Malezic M, Hesse S. Restoration of gait by functional electrical stimulation in paraplegic patients: a modified programme of treatment. Paraplegia. 1995;33:126–131.
Hesse, S
Restoration of gait by functional electrical stimulation in paraplegic patients: a modified programme of treatment
Paraplegia
1995
, vol. 
 (pg. 
126
-
131
)
Yang L, Granat MH, Paul JP, et al. Further development of hybrid functional electrical stimulation orthoses. Spinal Cord. 1996;34:611–614.
et, al
Further development of hybrid functional electrical stimulation orthoses
Spinal Cord
1996
, vol. 
 (pg. 
611
-
614
)
Marsolais EB, Kobetic R, Polando G, et al. The Case Western Reserve University hybrid gait orthosis. J Spinal Cord Med. 2000;23:100–108.
et, al
The Case Western Reserve University hybrid gait orthosis
J Spinal Cord Med
2000
, vol. 
 (pg. 
100
-
108
)
Sykes L, Ross ER, Powell ES, et al. Objective measurement of use of the reciprocating gait orthosis (RGO) and the electrically augmented RGO in adult patients with spinal cord lesions. Prosthet Orthot Int. 1996;20:182–190.
et, al
Objective measurement of use of the reciprocating gait orthosis (RGO) and the electrically augmented RGO in adult patients with spinal cord lesions
Prosthet Orthot Int
1996
, vol. 
 (pg. 
182
-
190
)
Thoumie P, Le Claire G, Beillot J, et al. Restoration of functional gait in paraplegic patients with the RGO-II hybrid orthosis. A multicenter controlled study. II: Physiological evaluation. Paraplegia. 1995;33:654–659.
et, al
Restoration of functional gait in paraplegic patients with the RGO-II hybrid orthosis. A multicenter controlled study. II: Physiological evaluation
Paraplegia
1995
, vol. 
 (pg. 
654
-
659
)
Field-Fote EC. Combined use of body weight support, functional electric stimulation, and treadmill training to improve walking ability in individuals with chronic incomplete spinal cord injury. Arch Phys Med Rehabil. 2001;82:818–824, (doi: 10.1053/apmr.2001.23752).
Field-Fote, EC
Combined use of body weight support, functional electric stimulation, and treadmill training to improve walking ability in individuals with chronic incomplete spinal cord injury
Arch Phys Med Rehabil
2001
, vol. 
 (pg. 
818
-
824
)
Hesse S, Werner C, Bardeleben A. Electromechanical gait training with functional electrical stimulation: case studies in spinal cord injury. Spinal Cord. 2004;42:346–352, (doi: 10.1038/sj.sc.3101595).
Bardeleben, A
Electromechanical gait training with functional electrical stimulation: case studies in spinal cord injury
Spinal Cord
2004
, vol. 
 (pg. 
346
-
352
)
Walker JB, Harris M. GM-1 ganglioside administration combined with physical therapy restores ambulation in humans with chronic spinal cord injury. Neurosci Lett. 1993;161:174–178, (doi: 10.1016/0304-3940(93)90287-U).
GM-1 ganglioside administration combined with physical therapy restores ambulation in humans with chronic spinal cord injury
Neurosci Lett.
, vol. 
161
 (pg. 
174
-
178
)
Fung J, Stewart JE, Barbeau H. The combined effects of clonidine and cyproheptadine with interactive training on the modulation of locomotion in spinal cord injured subjects. J Neurol Sci. 1990;100:85–93, (doi: 10.1016/0022-510X(90)90017-H).
Barbeau, H
The combined effects of clonidine and cyproheptadine with interactive training on the modulation of locomotion in spinal cord injured subjects
J Neurol Sci
1990
, vol. 
 (pg. 
85
-
93
)
Stroke Engine. Glossary of Terms. Available at: http://www.medicine.mcgill.ca/strokengine/definitions-en.html. Accessed March 19, 2007.
Iseli E, Cavigelli A, Dietz V, et al. Prognosis and recovery in ischaemic and traumatic spinal cord injury: clinical and electrophysiological evaluation. J Neurol Neurosurg Psychiatry. 1999;67:567–571.
et, al
Prognosis and recovery in ischaemic and traumatic spinal cord injury: clinical and electrophysiological evaluation
J Neurol Neurosurg Psychiatry
1999
, vol. 
 (pg. 
567
-
571
)
Kim CM, Eng JJ, Whittaker MW. Effects of a simple functional electric system and/or a hinged ankle-foot orthosis on walking in persons with incomplete spinal cord injury. Arch Phys Med Rehabil. 2004;85:1718–1723, (doi: 10.1016/j.apmr.2004.02.015).
Whittaker, MW
Effects of a simple functional electric system and/or a hinged ankle-foot orthosis on walking in persons with incomplete spinal cord injury
Arch Phys Med Rehabil
2004
, vol. 
 (pg. 
1718
-
1723
)
World Health Organization. International Classification of Impairments, Disability and Health. Geneva: WHO; 2001.
World Health, Organization
International Classification of Impairments, Disability and Health
2001
Eng JJ, Teasell RW, Miller WC, et al. Spinal Cord Injury Rehabilitation Evidence: method of the SCIRE systematic review. 2007;13(1):1–10.
Spinal Cord Injury Rehabilitation Evidence: method of the SCIRE systematic review
, vol. 
13
 (pg. 
1
-
10
)
Methods of the systematic reviews. In: Eng JJ, Teasell RW, Miller WC, et al., eds. SCIRE: Spinal Cord Injury Rehabilitation Evidence. 2006:2.1–2.11. Available at: http://www.icord.org/scire.
Moseley AM, Herbert RD, Sherrington C, et al. Evidence for physiotherapy practice: a survey of the Physiotherapy Evidence Database (PEDro). Aust J Physiother. 2002;48:43–49.
et, al
Evidence for physiotherapy practice: a survey of the Physiotherapy Evidence Database (PEDro)
Aust J Physiother
2002
, vol. 
 (pg. 
43
-
49
)
Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and nonrandomised studies of health care interventions. J Epidemiol Community Health. 1998;52:377–384.
Black, N
The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and nonrandomised studies of health care interventions
J Epidemiol Community Health
1998
, vol. 
 (pg. 
377
-
384
)
Foley NC, Teasell RW, Bhogal SK, et al. Stroke rehabilitation evidence-based review: methodology. Top Stroke Rehabil. 2003;10(1):1–7.
et, al
Stroke rehabilitation evidence-based review: methodology
Top Stroke Rehabil
2003
, vol. 
 (pg. 
1
-
7
)
Sackett DL, Straus SE, Richardson WS, et al. Evidence-Based Medicine: How to Practice and Teach EBM. Toronto, ON: Churchill Livingstone; 2000.
et, al
Evidence-Based Medicine: How to Practice and Teach EBM
2000
Granat MH, Ferguson AC, Andrews BJ, et al. The role of functional electrical stimulation in the rehabilitation of patients with incomplete spinal cord injury—observed benefits during gait studies. Paraplegia. 1993;31:207–215.
et, al
The role of functional electrical stimulation in the rehabilitation of patients with incomplete spinal cord injury—observed benefits during gait studies
Paraplegia
1993
, vol. 
 (pg. 
207
-
215
)
Johnston TE, Finson RL, Smith BT, et al. Functional electrical stimulation for augmented walking in adolescents with incomplete spinal cord injury. J Spinal Cord Med. 2003;26:390–400.
et, al
Functional electrical stimulation for augmented walking in adolescents with incomplete spinal cord injury
J Spinal Cord Med
2003
, vol. 
 (pg. 
390
-
400
)
Ladouceur M, Barbeau H. Functional electrical stimulation-assisted walking for persons with incomplete spinal injuries: changes in the kinematics and physiological cost of overground walking. Scand J Rehabil Med. 2000;32:72–79, (doi: 10.1080/003655000750045587).
Barbeau, H
Functional electrical stimulation-assisted walking for persons with incomplete spinal injuries: changes in the kinematics and physiological cost of overground walking
Scand J Rehabil Med
2000
, vol. 
 (pg. 
72
-
79
)
Ladouceur M, Barbeau H. Functional electrical stimulation-assisted walking for persons with incomplete spinal injuries: longitudinal changes in maximal overground walking speed. Scand J Rehabil Med. 2000;32:28–36, (doi: 10.1080/003655000750045712).
Barbeau, H
Functional electrical stimulation-assisted walking for persons with incomplete spinal injuries: longitudinal changes in maximal overground walking speed
Scand J Rehabil Med
2000
, vol. 
 (pg. 
28
-
36
)
Stein RB, Belanger M, Wheeler G, et al. Electrical systems for improving locomotion after incomplete spinal cord injury: an assessment. Arch Phys Med Rehabil. 1993;74:954–959.
et, al
Electrical systems for improving locomotion after incomplete spinal cord injury: an assessment
Arch Phys Med Rehabil
1993
, vol. 
 (pg. 
954
-
959
)
Wieler M, Stein RB, Ladouceur M, et al. Multicenter evaluation of electrical stimulation systems for walking. Arch Phys Med Rehabil. 1999;80:495–500, (doi: 10.1016/S0003-9993(99)90188-0).
et, al
Multicenter evaluation of electrical stimulation systems for walking
Arch Phys Med Rehabil
1999
, vol. 
 (pg. 
495
-
500
)
Klose KJ, Jacobs PL, Broton JG, et al. Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 1. Ambulation performance and anthropometric measures. Arch Phys Med Rehabil. 1997;78:789–793, (doi: 10.1016/S0003-9993(97)90188-X).
Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 1. Ambulation performance and anthropometric measures
Arch Phys Med Rehabil.
, vol. 
78
 (pg. 
789
-
793
)
Nakazawa K, Kakihana W, Kawashima N, et al. Induction of locomotor-like EMG activity in paraplegic persons by orthotic gait training. Exp Brain Res. 2004;157:117–123, (doi: 10.1007/s00221-003-1826-5).
et, al
Induction of locomotor-like EMG activity in paraplegic persons by orthotic gait training
Exp Brain Res
2004
, vol. 
 (pg. 
117
-
123
)
Saitoh E, Suzuki T, Sonoda S, et al. Clinical experience with a new hip-knee-ankle-foot orthotic system using a medial single hip joint for paraplegic standing and walking. Am J Phys Med Rehabil. 1996;75:198–203, (doi: 10.1097/00002060-199605000-00010).
et, al
Clinical experience with a new hip-knee-ankle-foot orthotic system using a medial single hip joint for paraplegic standing and walking
Am J Phys Med Rehabil
1996
, vol. 
 (pg. 
198
-
203
)
Franceschini M, Baratta S, Zampolini M, et al. Reciprocating gait orthoses: a multicenter study of their use by spinal cord injured patients. Arch Phys Med Rehabil. 1997;78:582–586, (doi: 10.1016/S0003-9993(97)90422-6).
et, al
Reciprocating gait orthoses: a multicenter study of their use by spinal cord injured patients
Arch Phys Med Rehabil
1997
, vol. 
 (pg. 
582
-
586
)
Harvey LA, Smith MB, Davis GM, et al. Functional outcomes attained by T9-12 paraplegic patients with the walkabout and the isocentric reciprocal gait orthoses. Arch Phys Med Rehabil. 1997;78:706–711, (ddoi: 10.1016/S0003-9993(97)90077-0).
Functional outcomes attained by T9-12 paraplegic patients with the walkabout and the isocentric reciprocal gait orthoses
Arch Phys Med Rehabil.
, vol. 
78
 (pg. 
706
-
711
)
Scivoletto G, Petrelli A, Lucente LD, et al. One year follow up of spinal cord injury patients using a reciprocating gait orthosis: preliminary report. Spinal Cord. 2000;38:555–558, (doi: 10.1038/sj.sc.3101047).
et, al
One year follow up of spinal cord injury patients using a reciprocating gait orthosis: preliminary report
Spinal Cord
2000
, vol. 
 (pg. 
555
-
558
)
Whittle MW, Cochrane GM, Chase AP, et al. A comparative trial of two walking systems for paralysed people. Paraplegia. 1991;29:97–102.
et, al
A comparative trial of two walking systems for paralysed people
Paraplegia
1991
, vol. 
 (pg. 
97
-
102
)
Bonaroti D, Akers JM, Smith BT, et al. Comparison of functional electrical stimulation to long leg braces for upright mobility for children with complete thoracic level spinal injuries. Arch Phys Med Rehabil. 1999;80:1047–1053, (doi: 10.1016/S0003-9993(99)90059-X).
et, al
Comparison of functional electrical stimulation to long leg braces for upright mobility for children with complete thoracic level spinal injuries
Arch Phys Med Rehabil
1999
, vol. 
 (pg. 
1047
-
1053
)
Massucci M, Brunetti G, Piperno R, et al. Walking with the advanced reciprocating gait orthosis (ARGO) in thoracic paraplegic patients: energy expenditure and cardiorespiratory performance. Spinal Cord. 1998;36:223–227, (doi: 10.1038/sj.sc.3100564).
et, al
Walking with the advanced reciprocating gait orthosis (ARGO) in thoracic paraplegic patients: energy expenditure and cardiorespiratory performance
Spinal Cord
1998
, vol. 
 (pg. 
223
-
227
)
Sykes L, Campbell IG, Powell ES, et al. Energy expenditure of walking for adult patients with spinal cord lesions using the reciprocating gait orthosis and functional electrical stimulation. Spinal Cord. 1996;34:659–665.
et, al
Energy expenditure of walking for adult patients with spinal cord lesions using the reciprocating gait orthosis and functional electrical stimulation
Spinal Cord
1996
, vol. 
 (pg. 
659
-
665
)
Winchester PK, Carollo JJ, Parekh RN, et al. A comparison of paraplegic gait performance using two types of reciprocating gait orthoses. Prosthet Orthot Int. 1993;17:101–106.
et, al
A comparison of paraplegic gait performance using two types of reciprocating gait orthoses
Prosthet Orthot Int
1993
, vol. 
 (pg. 
101
-
106
)
Field-Fote EC, Tepavac D. Improved intralimb coordination in people with incomplete spinal cord injury following training with body weight support and electrical stimulation. Phys Ther. 2002;82:707–715.
Tepavac, D
Improved intralimb coordination in people with incomplete spinal cord injury following training with body weight support and electrical stimulation
Phys Ther
2002
, vol. 
 (pg. 
707
-
715
)
Solomonow M, Aguilar E, Reisin E, et al. Reciprocating gait orthosis powered with electrical muscle stimulation (RGO II). Part I: Performance evaluation of 70 paraplegic patients. Orthopedics. 1997;20:315–324.
Reciprocating gait orthosis powered with electrical muscle stimulation (RGO II). Part I: Performance evaluation of 70 paraplegic patients
Orthopedics
, vol. 
20
 (pg. 
315
-
324
)
Dobkin B, Barbeau H, Deforge D, et al. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized spinal cord injury locomotor trial. Neurorehabil Neural Repair. 2007;21:25–35, (doi: 10.1177/1545968306295556).
The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized spinal cord injury locomotor trial
Neurorehabil Neural Repair
, vol. 
21
 (pg. 
25
-
35
)
Wernig A. Treadmill training after spinal cord injury: good but not better. Neurology. 2006;67:1901; author reply 1901–1902.
Wernig, A
Treadmill training after spinal cord injury: good but not better
Neurology
2006
, vol. 
 (pg. 
1901
-
1901
)
Wernig A. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006;67:1900;author reply 1900, (doi: 10.1212/01.wnl.0000249079.73112.38).
Wernig, A
Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI
Neurology
2006
, vol. 
 (pg. 
1900
-
author
)
Dietz V. Good clinical practice in neuro-rehabilitation. Lancet Neurol. 2006;5:377–378, (doi: 10.1016/S1474-4422(06)70420-3).
Dietz, V
Good clinical practice in neuro-rehabilitation
Lancet Neurol
2006
, vol. 
 (pg. 
377
-
378
)
Steeves JD, Lammertse D, Curt A, et al. Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: clinical trial outcome measures. Spinal Cord. 2007;45(3):206–221. Epub 2006 Dec 19, (doi: 10.1038/sj.sc.3102008).
et, al
Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: clinical trial outcome measures
Spinal Cord
2007
, vol. 
 (pg. 
206
-
221
)
Kido Thompson A, Stein RB. Short-term effects of functional electrical stimulation on motorevoked potentials in ankle flexor and extensor muscles. Exp Brain Res. 2004;159:491–500, (doi: 10.1007/s00221-004-1972-4).
Stein, RB
Short-term effects of functional electrical stimulation on motorevoked potentials in ankle flexor and extensor muscles
Exp Brain Res
2004
, vol. 
 (pg. 
491
-
500
)
Jaspers P, Peeraer L, Van Petegem W, et al. The use of an advanced reciprocating gait orthosis by paraplegic individuals: a follow-up study. Spinal Cord. 1997;35:585–589, (doi: 10.1038/sj.sc.3100462).
et, al
The use of an advanced reciprocating gait orthosis by paraplegic individuals: a follow-up study
Spinal Cord
1997
, vol. 
 (pg. 
585
-
589
)
Lotta S, Fiocchi A, Giovannini R, et al. Restoration of gait with orthoses in thoracic paraplegia: a multicentric investigation. Paraplegia. 1994;32:608–615.
et, al
Restoration of gait with orthoses in thoracic paraplegia: a multicentric investigation
Paraplegia
1994
, vol. 
 (pg. 
608
-
615
)
This content is only available as a PDF.