Background:

Spinal cord injury (SCI) is associated with a rapid loss of bone mass, resulting in severe osteoporosis and a 5- to 23-fold increase in fracture risk. Despite the seriousness of fractures in SCI, there are multiple barriers to osteoporosis diagnosis and wide variations in treatment practices for SCI-induced osteoporosis.

Methods:

We review the biological and structural changes that are known to occur in bone after SCI in the context of promoting future research to prevent or reduce risk of fracture in this population. We also review the most commonly used methods for assessing bone after SCI and discuss the strengths, limitations, and clinical applications of each method.

Conclusions:

Although dual-energy x-ray absorptiometry assessments of bone mineral density may be used clinically to detect changes in bone after SCI, 3-dimensional methods such as quantitative CT analysis are recommended for research applications and are explained in detail.

All authors have no conflicts of interest. This study received support from the US Department of Education, National Institute on Disability and Rehabilitation Research (H133N110010), and the National Institutes of Health (AR059270 and HD056721 to L.R.M.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

1.
Jiang
SD
,
Dai
LY
,
Jiang
LS
.
Osteoporosis after spinal cord injury
.
Osteoporos Int.
2006
;
17
:
180
192
.
2.
Vestergaard
P
,
Krogh
K
,
Rejnmark
L
,
Mosekilde
L
.
Fracture rates and risk factors for fractures in patients with spinal cord injury
.
Spinal Cord.
1998
;
36
:
790
796
.
3.
Carbone
LD
,
Chin
AS
,
Burns
SP
,et al.
Morbidity following lower extremity fractures in men with spinal cord injury
.
Osteoporos Int.
2013
;
24
:
2261
2267
.
4.
Zehnder
Y
,
Luthi
M
,
Michel
D
,et al.
Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: A cross-sectional observational study in 100 paraplegic men
.
Osteoporos Int.
2004
;
15
:
180
189
.
5.
Pelletier
CA
,
Dumont
FS
,
Leblond
J
,
Noreau
L
,
Giangregorio
L
,
Craven
BC
.
Self-report of one-year fracture incidence and osteoporosis prevalence in a community cohort of Canadians with spinal cord injury
.
Top Spinal Cord Inj Rehabil.
2014
;
20
:
302
309
.
6.
Garland
DE
,
Adkins
RH
,
Stewart
CA
,
Ashford
R
,
Vigil
D
.
Regional osteoporosis in women who have a complete spinal cord injury
.
J Bone Joint Surg Am.
2001
;
83-A
:
1195
1200
.
7.
Rogers
T
,
Shokes
L
,
Woodworth
P
.
Pathologic extremity fracture care in spinal cord injury
.
Top Spinal Cord Inj Rehabil.
2005
;
11
:
70
.
8.
Eser
P
,
Frotzler
A
,
Zehnder
Y
,
Denoth
J
.
Fracture threshold in the femur and tibia of people with spinal cord injury as determined by peripheral quantitative computed tomography
.
Arch Phys Med Rehabil.
2005
;
86
:
498
504
.
9.
Frotzler
A
,
Cheikh-Sarraf
B
,
Pourtehrani
M
,
Krebs
J
,
Lippuner
K
.
Long-bone fractures in persons with spinal cord injury [published online ahead of print May 19, 2015]
.
Spinal Cord.
10.
Morse
LR
,
Battaglino
RA
,
Stolzmann
KL
,et al.
Osteoporotic fractures and hospitalization risk in chronic spinal cord injury
.
Osteoporos Int.
2009
;
20
:
385
392
.
11.
Morse
LR
,
Giangregorio
L
,
Battaglino
RA
,et al.
VA-based survey of osteoporosis management in spinal cord injury
.
Phys Med Rehabil.
2009
;
1
:
240
244
.
12.
Bauman
WA
,
Spungen
AM
.
Metabolic changes in persons after spinal cord injury
.
Phys Med Rehabil Clin N Am.
2000
;
11
(
1
):
109
140
.
13.
Dauty
M
,
Perrouin
VB
,
Maugars
Y
,
Dubois
C
,
Mathe
JF
.
Supralesional and sublesional bone mineral density in spinal cord-injured patients
.
Bone
.
2000
;
27
(
2
):
305
309
.
14.
Demirel
G
,
Yilmaz
H
,
Paker
N
,
Onel
S
.
Osteoporosis after spinal cord injury
.
Spinal Cord.
1998
;
36
(
12
):
822
825
.
15.
Frey-Rindova
P
,
de Bruin
ED
,
Stussi
E
,
Dambacher
MA
,
Dietz
V
.
Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography
.
Spinal Cord.
2000
;
38
(
1
):
26
32
.
16.
Garland
DE
,
Stewart
CA
,
Adkins
RH
, et al.
Osteoporosis after spinal cord injury
.
J Orthop Res.
1992
;
10
(
3
):
371
378
.
17.
Uebelhart
D
,
Hartmann
D
,
Vuagnat
H
,
Castanier
M
,
Hachen
HJ
,
Chantraine
A
.
Early modifications of biochemical markers of bone metabolism in spinal cord injury patients. A preliminary study
.
Scand J Rehabil Med.
1994
;
26
(
4
):
197
202
.
18.
Aguirre
JI
,
Plotkin
LI
,
Stewart
SA
,et al.
Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss
.
J Bone Miner Res.
2006
;
21
(
4
):
605
615
.
19.
Wilmet
E
,
Ismail
AA
,
Heilporn
A
,
Welraeds
D
,
Bergmann
P
.
Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section
.
Paraplegia
.
1995
;
33
:
674
677
.
20.
Warden
SJ
,
Bennell
KL
,
Matthews
B
,
Brown
DJ
,
McMeeken
JM
,
Wark
JD
.
Quantitative ultrasound assessment of acute bone loss following spinal cord injury: A longitudinal pilot study
.
Osteoporos Int.
2002
;
13
:
586
592
.
21.
Doherty
AL
,
Battaglino
RA
,
Donovan
J
,et al.
Adiponectin is a candidate biomarker of lower extremity bone density in men with chronic spinal cord injury
.
J Bone Miner Res.
2014
;
29
(
1
):
251
259
.
22.
Dudley-Javoroski
S
,
Shields
RK
.
Regional cortical and trabecular bone loss after spinal cord injury
.
J Rehabil Res Dev.
2012
;
49
:
1365
1376
.
23.
Coupaud
S
,
McLean
AN
,
Allan
DB
.
Role of peripheral quantitative computed tomography in identifying disuse osteoporosis in paraplegia
.
Skeletal Radiol.
2009
;
38
:
989
995
.
24.
Eser
P
,
Frotzler
A
,
Zehnder
Y
,et al.
Relationship between the duration of paralysis and bone structure: A pQCT study of spinal cord injured individuals
.
Bone
.
2004
;
34
:
869
880
.
25.
Coupaud
S
,
McLean
AN
,
Lloyd
S
,
Allan
DB
.
Predicting patient-specific rates of bone loss at fracture-prone sites after spinal cord injury
.
Disabil Rehabil.
2012
;
34
:
2242
2250
.
26.
Edwards
WB
,
Schnitzer
TJ
,
Troy
KL
.
Bone mineral loss at the proximal femur in acute spinal cord injury
.
Osteoporos Int.
2013
;
24
:
2461
2469
.
27.
Edwards
WB
,
Schnitzer
TJ
,
Troy
KL
.
Bone mineral and stiffness loss at the distal femur and proximal tibia in acute spinal cord injury
.
Osteoporos Int.
2014
;
25
:
1005
1015
.
28.
Edwards
WB
,
Schnitzer
TJ
,
Troy
KL
.
The mechanical consequence of actual bone loss and simulated bone recovery in acute spinal cord injury
.
Bone
.
2014
;
60
:
141
147
.
29.
Edwards
WB
,
Schnitzer
TJ
,
Troy
KL
.
Reduction in proximal femoral strength in patients with acute spinal cord injury
.
J Bone Miner Res.
2014
;
29
:
2074
2079
.
30.
Zehnder
Y
,
Risi
S
,
Michel
D
,et al.
Prevention of bone loss in paraplegics over 2 years with alendronate
.
J Bone Miner Res.
2004
;
19
:
1067
1074
.
31.
Edwards
WB
,
Simonian
N
,
Troy
KL
,
Schnitzer
TJ
.
Reduction in torsional stiffness and strength at the proximal tibia as a function of time since spinal cord injury [published online ahead of print May 21, 2015]
.
J Bone Miner Res.
32.
Giangregorio
LM
,
Craven
BC
,
Webber
CE
.
Musculoskeletal changes in women with spinal cord injury: A twin study
.
J Clin Densitometry
.
2005
;
8
:
347
351
.
33.
Modlesky
CM
,
Majumdar
S
,
Narasimhan
A
,
Dudley
GA
.
Trabecular bone microarchitecture is deteriorated in men with spinal cord injury
.
J Bone Miner Res.
2004
;
19
:
48
55
.
34.
Battaglino
RA
,
Sudhakar
S
,
Lazzari
AA
,
Garshick
E
,
Zafonte
R
,
Morse
LR
.
Circulating sclerostin is elevated in short-term and reduced in long-term SCI
.
Bone
.
2012
;
51
(
3
):
600
605
.
35.
Hammond
ER
,
Metcalf
HM
,
McDonald
JW
,
Sadowsky
CL
.
Bone mass in individuals with chronic spinal cord injury: Associations with activity-based therapy, neurologic and functional status, a retrospective study
.
Arch Phys Med Rehabil.
2014
;
95
:
2342
2349
.
36.
Tan
CO
,
Battaglino
RA
,
Doherty
AL
,et al.
Adiponectin is associated with bone strength and fracture history in paralyzed men with spinal cord injury
.
Osteoporos Int.
2014
;
25
(
11
):
2599
2607
.
37.
Garland
DE
,
Adkins
RH
,
Stewart
CA
.
Fracture threshold and risk for osteoporosis and pathologic fractures in individuals with spinal cord injury
.
Top Spinal Cord Inj Rehabil.
2005
;
11
:
61
69
.
38.
Craven
BC
,
Robertson
LA
,
McGillivray
CF
,
Adachi
JD
.
Detection and treatment of sublesional osteoporosis among patients with chronic spinal cord injury
.
Top Spinal Cord Inj Rehabil.
2009
;
14
(
4
):
1
22
.
39.
Bakkum
AJ
,
Janssen
TW
,
Rolf
MP
,et al.
A reliable method for measuring proximal tibia and distal femur bone mineral density using dual-energy X-ray absorptiometry
.
Med Eng Phys.
2014
;
36
(
3
):
387
390
.
40.
McPherson
JG
,
Edwards
WB
,
Prasad
A
,
Troy
KL
,
Griffith
JW
,
Schnitzer
TJ
.
Dual energy X-ray absorptiometry of the knee in spinal cord injury: Methodology and correlation with quantitative computed tomography
.
Spinal Cord.
2014
;
52
(
11
):
821
825
.
41.
Morse
LR
,
Lazzari
AA
,
Battaglino
R
,et al.
Dual energy X-ray absorptiometry of the distal femur may be more reliable than the proximal tibia in spinal cord injury
.
Arch Phys Med Rehabil.
2009
;
90
:
827
831
.
42.
Lang
TF
,
Keyak
JH
,
Heitz
MW
,et al.
Volumetric quantitative computed tomography of the proximal femur: Precision and relation to bone strength
.
Bone
.
1997
;
21
:
101
108
.
43.
Adams
JE
.
Quantitative computed tomography
.
Eur J Radiol.
2009
;
71
:
415
424
.
44.
Hood
JA
,
Farah
JW
,
Craig
RG
.
Modification of stresses in alveolar bone induced by a tilted molar
.
J Prosthetic Dentistry
.
1975
;
34
:
415
421
.
45.
Keyak
JH
,
Meagher
JM
,
Skinner
HB
,
Mote
CD
Jr
.
Automated three-dimensional finite element modelling of bone: A new method
.
J Biomed Eng.
1990
;
12
(
5
):
389
397
.
46.
Carter
DR
,
Hayes
WC
.
The compressive behavior of bone as a two-phase porous structure
.
J Bone Joint Surg Am.
1977
;
59
:
954
962
.
47.
Keller
TS
.
Predicting the compressive mechanical behavior of bone
.
J Biomech.
1994
;
27
:
1159
1168
.
48.
Morgan
EF
,
Bayraktar
HH
,
Keaveny
TM
.
Trabecular bone modulus-density relationships depend on anatomic site
.
J Biomech.
2003
;
36
:
897
904
.
49.
Rho
JY
,
Hobatho
MC
,
Ashman
RB
.
Relations of mechanical properties to density and CT numbers in human bone
.
Med Eng Phys.
1995
;
17
:
347
355
.
50.
Snyder
SM
,
Schneider
E
.
Estimation of mechanical properties of cortical bone by computed tomography
.
J Orthop Res.
1991
;
9
:
422
431
.
51.
Bhatia
VA
,
Edwards
WB
,
Troy
KL
.
Predicting surface strains at the human distal radius during an in vivo loading task—finite element model validation and application
.
J Biomech.
2014
;
47
:
2759
2765
.
52.
Keyak
JH
,
Rossi
SA
,
Jones
KA
,
Skinner
HB
.
Prediction of femoral fracture load using automated finite element modeling
.
J Biomech.
1998
;
31
:
125
133
.
53.
Schileo
E
,
Taddei
F
,
Malandrino
A
,
Cristofolini
L
,
Viceconti
M
.
Subject-specific finite element models can accurately predict strain levels in long bones
.
J Biomech.
2007
;
40
:
2982
2989
.
54.
Completo
A
,
Fonseca
F
,
Simoes
JA
.
Finite element and experimental cortex strains of the intact and implanted tibia
.
J Biomech Eng.
2007
;
129
:
791
797
.
55.
Edwards
WB
,
Schnitzer
TJ
,
Troy
KL
.
Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT
.
J Biomech.
2013
;
46
:
1655
1662
.
56.
Crawford
RP
,
Cann
CE
,
Keaveny
TM
.
Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography
.
Bone
.
2003
;
33
:
744
750
.
57.
Gislason
MK
,
Coupaud
S
,
Sasagawa
K
,et al.
Prediction of risk of fracture in the tibia due to altered bone mineral density distribution resulting from disuse: A finite element study
.
J Eng Med.
2014
;
228
:
165
174
.