Abstract

Tire skid marks at the scene of an accident are often used as evidence and are a very important phenomenon. However, the mechanism of this complex phenomenon has not yet been fully examined.

Tires are manufactured by a chemical reaction in which rubber molecules are combined into a network structure during a process called vulcanization, in which the tire is heated in a mold. The transient temperature distribution is important in determining the state of vulcanization, but the analysis is very difficult.

We treat the tire tread as a rubber slab to estimate the temperature history during heating and cooling. Then we calculate the vulcanization index using Arrhenius's equation, assuming that the rate of chemical reaction approximately doubles as the temperature increases by 10° C.

Finally, we calculate the transient temperature distribution of the tread due to the heat generated by internal friction (rolling resistance of the tire), and the heat generated by sliding friction under conditions of severe cornering and braking. We investigate a criterion for modeling the occurrence of tire skid marks, assuming that skid marks are caused by exceeding the softening temperatures of the rubber and asphalt.

This content is only available as a PDF.
You do not currently have access to this content.