Abstract

Counterbalance trucks are machines in widespread use in every industrial sector. Unlike cars, they are not designed with suspension systems. Consequently, they are considered to be high vibrating vehicles. Nevertheless, like suspension seats, tires can be selected as suspension parts. This paper presents a new numerical model for the analysis of the vibratory behavior of counterbalance truck tires. This model was intended to be a part of a fork lift truck model, including axles, chassis, and cabin. All the results reported here show a close agreement between measurements and numerical simulations. Thus, it can predict the vibration emission values at the driving position and is used to compare the efficiency of solid tires with pneumatic tires in terms of transmitted vibration levels.

This content is only available as a PDF.
You do not currently have access to this content.