We established the new numerical procedure for hydroplaning. We considered the following three important factors; fluid/structure interaction, tire rolling, and practical tread pattern. The tire was analyzed by the finite element method with Lagrangian formulation, and the fluid was analyzed by the finite volume method with Eulerian formulation. Since the tire and the fluid can be modeled separately and their coupling is computed automatically, the fluid/structure interaction of the complex geometry, such as the tire with the tread pattern, can be analyzed.

Since we focused the aim of the simulation on dynamic hydroplaning with thick water films, we ignored the effect of fluid viscosity. We verified the predictability of the hydroplaning simulation in the different parameters such as the water flow, the velocity dependence of hydroplaning, and the effect of the tread pattern on hydroplaning. These parameters could be predicted qualitatively.

We also developed the procedure of the global‐local analysis to apply the hydroplaning simulation to a practical tire tread pattern design, and we found that the sloped block tip is effective in improving hydroplaning performance.

This content is only available as a PDF.
You do not currently have access to this content.