Tread pattern wear is predicted by using an explicit finite element model (FEM) and compared with the indoor drum test results under a set of actual driving conditions. One pattern is used to determine the wear rate equation, which is composed of slip velocity and tangential stress under a single driving condition. Two other patterns with the same size (225/45ZR17) and profile are used to be simulated and compared with the indoor wear test results under the actual driving conditions. As a study on the rubber wear rate equation, trial wear rates are assumed by several constitutive equations and each trial wear rate is integrated along time to yield the total accumulated wear under a selected single cornering condition. The trial constitutive equations are defined by independently varying each exponent of slip velocity and tangential stress. The integrated results are compared with the indoor test results, and the best matching constitutive equation for wear is selected for the following wear simulation of two other patterns under actual driving conditions. Tens of thousands of driving conditions of a tire are categorized into a small number of simplified conditions by a suggested simplification procedure which considers the driving condition frequency and weighting function. Both of these simplified conditions and the original actual conditions are tested on the indoor drum test machines. The two results can be regarded to be in good agreement if the deviation that exists in the data is mainly due to the difference in the test velocity. Therefore, the simplification procedure is justified. By applying the selected wear rate equation and the simplified driving conditions to the explicit FEM simulation, the simulated wear results for the two patterns show good match with the actual indoor wear results.

You do not currently have access to this content.