Abstract

Optical methods using digital image correlation (DIC) are utilized in developing rubber constitutive tests. Two and three dimensional DIC systems are employed to measure strains on rubber specimens subjected to uniaxial, planar, and biaxial stress states. A special membrane inflation test was developed and is described for providing the biaxial constitutive data. Deformation-induced material property changes for the three modes of testing are quantified using a concept based on energy dissipation. The constitutive test strain ranges for each of the three modes are separately selected to equalize the material states. The methodology is applied to filled rubber compounds in order to characterize them in terms of hyperelastic behavior. Evaluation and comparison of several common hyperelastic models are given, and application to finite element modeling of a structural rubber specimen is described.

You do not currently have access to this content.