FIG. 4
Visualization of volume change over time in representative brain regions. Adjusted volumes were generated by subtracting the mouse-, and litter-specific random intercepts from raw data and then visualized by group with fit lines. For each plot (panels A–D), the x-axis represents age, while y-axis represents the volume of voxels within the structures. Points within the plots represent individual mice, with darker points representing sham controls, and lighter points representing mice receiving cranial irradiation. Points were fit using the linear mixed effects model, where a natural spline was used to model the time course of normal growth. Panels A and B: Plots represent structures exhibiting “small” and “large” magnitude volume changes over the time period postirradiation, respectively. The secondary motor cortex exhibited a small volume loss of ∼4% after cranial irradiation, while the stria terminalis exhibited a large volume loss of ∼13%. Panels C and D: Plots represent structures exhibiting “fast” and “slow” emerging volume changes over the time period postirradiation, respectively. The dentate gyrus (granule cell layer) exhibited fast emerging volume changes with a λ value of 2.6 days, while the cerebral peduncle had a more protracted emergence of volume change, with a λ value of 7.0 days.

Visualization of volume change over time in representative brain regions. Adjusted volumes were generated by subtracting the mouse-, and litter-specific random intercepts from raw data and then visualized by group with fit lines. For each plot (panels A–D), the x-axis represents age, while y-axis represents the volume of voxels within the structures. Points within the plots represent individual mice, with darker points representing sham controls, and lighter points representing mice receiving cranial irradiation. Points were fit using the linear mixed effects model, where a natural spline was used to model the time course of normal growth. Panels A and B: Plots represent structures exhibiting “small” and “large” magnitude volume changes over the time period postirradiation, respectively. The secondary motor cortex exhibited a small volume loss of ∼4% after cranial irradiation, while the stria terminalis exhibited a large volume loss of ∼13%. Panels C and D: Plots represent structures exhibiting “fast” and “slow” emerging volume changes over the time period postirradiation, respectively. The dentate gyrus (granule cell layer) exhibited fast emerging volume changes with a λ value of 2.6 days, while the cerebral peduncle had a more protracted emergence of volume change, with a λ value of 7.0 days.

Close Modal

or Create an Account

Close Modal
Close Modal